子集(英語:subset)亦稱部分集合,為某集合中部分元素的集合;關係相反時則稱作父集、母集、超集。子集與父集的关系被称为“包含”。
如果集合A的任意一个元素都是集合B的元素(任意a∈A,则a∈B),那么集合A称为集合B的子集,记为或,读作“集合A包含于集合B”或“集合B包含集合A”。
即:,有,则。
- 是的子集(或称包含于 );
- 是的父集/超集(或称包含 );
任何集合皆是本身的子集()。而的子集中不等于的集合,称为真子集,若是的真子集,写作。
定义
假设有和两个集合,如果中的每个元素都是的元素,则:
- 是的子集,记作
- 也可以说
- 是的超集,记作
如果是的子集,但不等于(即中至少存在一个元素不在集合中),则:
- 是的真子集,记作
- 也可以说
- 是的真超集,记作
符号
ISO 80000-2标准中定义了两种符号搭配:[1]
举例
性质
命题1:空集是任意集合的子集。
这个命题说明:包含是一种偏序关系。
命题2:若是集合,则:
- 自反性:
- 传递性:
- 若且则
这个命题说明:对任意集合,的幂集按包含排序是一个有界格,与上述命题相结合,则它是一个布尔代数。
命题3:若是集合的子集,则:
- 存在并运算:
- 若且则
- 存在交运算:
- 若且则
命题4:对任意两个集合和,下列表述等价:
參考文獻
参见
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.