Loading AI tools
来自维基百科,自由的百科全书
在统计学中,对一个样本统计量进行t-标准化(studentization,或直译为“学生化”)一般是指将其中心化之后,除以自身的标准差的变换方式。
广义的t-标准化,是指用其他样本矩来除该统计量。
t-标准化与标准化(standarization)最重要的区别是,标准化用真实的总体参数作除数,而t-标准化用可以观测到的样本统计量作除数。一般而言,标准化需要假设较多的已知信息。
例如,在估计正态分布 的位置参数 时,常用尺度参数 的估计量来t-标准化位置参数的估计量,即:
其中 是样本方差,注意应该用 整体(又称“标准误差”)而不是 来估计 的标准差。在这个例子里,如果对 进行估计,并估计量的立方根代替 之表达式中的 ,那么就做成一个广义的t-标准化。如果用真实的 代替 ,那么就做成一个标准化。
分母的平方是对 的良好估计,这个估计一般不容易得到,通行的做法是用一个经过仔细设计的重抽样方法做这个方差估计,例如Bootstrap、Jackknife等。
t-标准化具有以下重要意义:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.