若V是一拓撲向量空間,所有连续線性泛函的集稱為连续对偶,有時也簡稱為對偶空間。若是巴拿赫空間,其對偶空間也是。为了把普通的对偶空间与连续对偶空间區別,有时把前一个称为代数对偶。在有限维空间中,每一个线性泛函都是连续的,因此连续对偶与代数对偶相同;但在无限维空间的情况下,连续对偶是代数对偶的真子空间。
假设实坐标空间Rn内的向量用列向量来表示:
那么这些坐标中的任何线性泛函都可以用以下形式的和来表示:
这仅仅是行向量[a1 ... an]与列向量的矩阵乘积:
线性泛函首先出现在泛函分析——函数的向量空间的研究中。线性泛函的一个典型的例子是积分:由黎曼積分所定义的线性变换
是由(在上定義的連續函數)的向量空間映射到線性泛函。I(ƒ)的线性可以从积分的基本事实推出:
-
-
以 表示定義在區間 上的不超过 次的實值多項式。 若,則設計值泛函(英語:evaluation functional):
映射ƒ → ƒ(c)是线性的,因为:
若 是 上的不同點,那么 是 對偶空間的一個基。(Lax (1996)以拉格朗日插值法證明此。)
以上定义的积分泛函I定义了次数不超过n的多项式的子空间Pn上的线性泛函。如果x0,……,xn是[a,b]内n+1个不同的点,那么存在系数a0,……,an,使得对于所有的ƒ Pn,都有:
这形成了数值积分理论的基础。
这可以从以上定义的线性泛函Pn的对偶空间的基的事实推出(Lax 1996)。
线性泛函在量子力学中特别重要。量子力學系統以跟其對偶空間共軛同構的希爾伯特空間表示。系統的一個態可以一線性泛函表示。詳見狄拉克符號。
在廣義函數的理論,分佈可以視為測試函數空間的線性泛函。
- 任何线性泛函要么是平凡的(处处为0),要么是到标量域的满射。这是由于向量子空间在线性变换下的像是一个子空间,因此是V在L下的像。但k唯一的子空间(也就是说,k-子空间)是{0}和k本身。
- 一个线性泛函是连续的,当且仅当它的核是闭集(Rudin 1991,Theorem 1.18) harv模板錯誤: 無指向目標: CITEREFRudin1991 (幫助)。
- 线性泛函是(0 1)类型的张量。它是非标量协变张量的最简单的一种。
从有限维空间内的每一个非退化的双线性形式,都可以得到一个从V到V*的同构。特别地,把V内的双线性形式记为⟨ , ⟩ (例如在欧几里得空间中,⟨v,w⟩ = v·w是v和w的数量积),那么存在一个自然同构,由下式给出:
逆同构由给出,其中ƒ是V的唯一元素,使得对于所有的w ∈ V,都有:
以上定义的向量v* ∈ V*称为v ∈ V的对偶向量。
根据里斯表示定理,在无穷维希尔伯特空间中,类似的结果也成立。存在一个从V → V*到连续对偶空间 V*的映射。然而,这个映射不是线性的,而是反线性的。
在有限维空间内,一個線性泛函可以用其水平集來表示。例如在三維空間,一個線性泛函的水平集是互相平行的平面的族。在高維空間,它們就是平行的超平面。這種觀點可以在一些廣義相對論的文獻找到,如Misner, Thorne & Wheeler (1973)。
当空间V带有内积时,可以明确写出给定基的对偶基的一个公式。设V具有(不一定正交的)基。在三维空间内(n = 3),对偶基可以明确写成:
对于i=1,2,3,其中是列维-奇维塔符号,是V上的内积(或数量积)。
在高维空间中,可以推广如下:
其中是霍奇星算子。
如果有度规结构,就会产生一个V到V*的同构映射.
当基向量,……,是在度规下的标准正交基的时候,
来充当对偶基。
当是正交基的时候用来充当对偶基。
正是因为有度规产生的同构存在就没有必要再提对偶空间了。
- Bishop, Richard; Goldberg, Samuel, Chapter 4, Tensor Analysis on Manifolds, Dover Publications, 1980, ISBN 0-486-64039-6
- Halmos, Paul, Finite dimensional vector spaces, Springer, 1974, ISBN 0387900934
- Lax, Peter, Linear algebra, Wiley-Interscience, 1996, ISBN 978-0471111115
- Misner, Charles W.; Thorne, Kip. S.; Wheeler, John A., Gravitation, W. H. Freeman, 1973, ISBN 0-7167-0344-0
- Schutz, Bernard, Chapter 3, A first course in general relativity, Cambridge, UK: Cambridge University Press, 1985, ISBN 0-521-27703-5