在数学特别是双线性代数中,有同样维度的两个向量 u {\displaystyle \mathbf {u} } 和 v {\displaystyle \mathbf {v} } 的并矢积 P = u ⊗ v {\displaystyle \mathbb {P} =\mathbf {u} \otimes \mathbf {v} } 是这些向量的张量积,而结果是阶为 2 的张量。 关于选定的基 { e i } {\displaystyle \{\mathbf {e} _{i}\}} ,并矢积 P = u ⊗ v {\displaystyle \mathbb {P} =\mathbf {u} \otimes \mathbf {v} } 的分量 P i j {\displaystyle P_{ij}} 可以定义为 P i j = u i v j {\displaystyle P_{ij}=u_{i}v_{j}} , 这里的 u = ∑ i u i e i {\displaystyle \mathbf {u} =\sum _{i}u_{i}\mathbf {e} _{i}} , v = ∑ j v j e j {\displaystyle \mathbf {v} =\sum _{j}v_{j}\mathbf {e} _{j}} , 而 P = ∑ i , j P i j e i ⊗ e j {\displaystyle \mathbb {P} =\sum _{i,j}P_{ij}\mathbf {e} _{i}\otimes \mathbf {e} _{j}} . 并矢积可以简单的表示为通过列向量 u {\displaystyle \mathbf {u} } 乘以行向量 v {\displaystyle \mathbf {v} } 的方块矩阵。例如, u ⊗ v → [ u 1 u 2 u 3 ] [ v 1 v 2 v 3 ] = [ u 1 v 1 u 1 v 2 u 1 v 3 u 2 v 1 u 2 v 2 u 2 v 3 u 3 v 1 u 3 v 2 u 3 v 3 ] , {\displaystyle \mathbf {u} \otimes \mathbf {v} \rightarrow {\begin{bmatrix}u_{1}\\u_{2}\\u_{3}\end{bmatrix}}{\begin{bmatrix}v_{1}&v_{2}&v_{3}\end{bmatrix}}={\begin{bmatrix}u_{1}v_{1}&u_{1}v_{2}&u_{1}v_{3}\\u_{2}v_{1}&u_{2}v_{2}&u_{2}v_{3}\\u_{3}v_{1}&u_{3}v_{2}&u_{3}v_{3}\end{bmatrix}},} 这里的箭头指示这只是并矢积关于特定基的特定表示。在这种表示中,并矢积是克罗内克积的特殊情况。 并矢张量 张量积 克罗内克积 外积 Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.