Loading AI tools
来自维基百科,自由的百科全书
多维标度(英語:multidimensional scaling,缩写:MDS),又译多维尺度,又稱相似度结构分析(similarity structure analysis),属于多重变量分析的方法之一,是社会学、数量心理学、市场营销等统计实证分析的常用方法。
此條目没有列出任何参考或来源。 (2024年6月28日) |
多维标度是一个探索性的过程方法
用于评判和感知:
红色 | 橙色 | 黄色 | 绿色 | 蓝色 | 紫色 | |
红色 | - | |||||
橙色 | 6 | - | ||||
黄色 | 8 | 0 | - | |||
绿色 | 10 | 8 | 9 | - | ||
蓝色 | 10 | 10 | 10 | 6 | - | |
紫色 | 0 | 7 | 10 | 9 | 7 | - |
相似度矩阵举例(数字越小表示越相似)
例如,10个对象,2维空间,坐标个数则为10×2=20,“相似度”的个数为C102=45,数据压缩系数=相似度的个数÷坐标个数=45÷20=2.25(数据压缩系数要大于等于2才可接受,否则不能做多维标度分析)
Cn2对“相似度”进行排序,最相似的一对得到序数1,最不相似的一对得到序数Cn2
与“完全排序法”不同的是,虽然最相似的一对得到序数1,但是可以有多于一对得到相同的序数,最不相似的一对也不一定会依序得到Cn2
对各维度进行不同的加权
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.