热门问题
时间线
聊天
视角

五角錐球狀屋頂

来自维基百科,自由的百科全书

五角錐球狀屋頂
Remove ads

五角錐球狀屋頂(日語:五角錐球形屋根[1]、英語:Disphenocingulum)是一種由20個三角形和4個正方形組成的二十四面體[2],為詹森多面體的其中一個,索引為J90[3]。其可以藉由合併2個去除2個三角形面的球狀屋頂來構造,但它無法由柏拉圖立體(正多面體)和阿基米得立體(半正多面體)經過切割、增補而得來,是詹森多面體中的基本立體之一。詹森多面體是凸多面體,面皆由正多邊形組成但不屬於均勻多面體,共有92種。這些立體最早在1966年由諾曼·詹森英语Norman Johnson (mathematician)(Norman Johnson)命名並給予描述[4]

事实速览 類別, 識別 ...
Remove ads

性質

五角錐球狀屋頂共由24個、38條和16個頂點組成[5][6][7][8]。其可以視為由2個去除2個三角形面的球狀屋頂三角形面重新排列合併而成,每個去除2個三角形面的球狀屋頂有12個面,三角形面重新排列合併完成後為二十四面體。其英文名稱字首「di-」表示兩個球狀屋頂,而字尾「-cingulum」(為belt(腰帶)的拉丁語)指的是12個分布於兩個正方形「屋頂」周圍的三角形的腰帶,兩者彼此旋轉90度互相接合[7]。雖然這24個面皆為正多邊形,但由於其有多種頂角,不滿足點可遞的特性,因此不屬於均勻多面體,這類立體早在1966年由諾曼·詹森英语Norman Johnson (mathematician)(Norman Johnson)命名並給予描述[4]

在組成五角錐球狀屋頂的24個面中,有20個三角形面和4個正方形面[6][8]。在其16個頂點中,有4個是5個三角形的公共頂點[8],在頂點圖中可以用[35]來表示[9]、還有8個頂點是4個三角形和1個正方形的公共頂點,在頂點圖中可以用[34,4]來表示[9]、剩下的4個頂點是2個三角形和2個正方形的公共頂點[8],在頂點圖中可以用[32,42]來表示[9]

Remove ads

體積與表面積

若一個五角錐球狀屋頂邊長為,則其表面積為:[10]

[11]

在92種詹森多面體中,有13種詹森多面體的單位邊長體積(V/a3)無法表達為解析數。而五角錐球狀屋頂就是這13種詹森多面體之一。

由於其體積無法表達為解析數,但可以用近似值表示。邊長為的五角錐球狀屋頂體積近似為:

[6]

上述體積近似值為以下多項式的最大實根:[12]

 

1213025622610333925376 x24 + 54451372392730545094656 x22
− 796837093078664749252608 x20 − 4133410366404688544268288 x18
+ 20902529024429842816303104 x16 − 133907540390420673677230080 x14
+ 246234688242991598853881856 x12 − 63327534106871321714442240 x10
+ 14389309497459555704164608 x8 + 48042947402464500749392128 x6
− 5891096640600351061013664 x4 − 3212114716816853362953264 x2 + 479556973248657693884401

Remove ads

頂點座標

≈ 0.76713為下列多項式的實根

則邊長為2的五角錐球狀屋頂可以由下列頂點的軌道的並集在沿xz平面和yz平面鏡射所產生的空間對稱群群作用下給出:[13]

Remove ads

相關多面體

參見

參考文獻

外部連結

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads