YBC 7289是一片古巴比倫黏土板,其上以六十進制記載了單位正方形的對角線長√2的準確估計值,所以備受關注。這個六十進制近似數換算成十進制相當於估算√2到六位有效數字,這個近似數被稱為「古典世界中...目前已知估算精度最高的近似數」。[1] 這片黏土板據信是一位南美索不達米亞地區的學生的作品,作成的時間大概在公元前18世紀到公元前17世紀,被J·P·摩根連同其它一些古巴比倫黏土板捐給耶魯大學收藏,「YBC」是收納這件文物的耶魯-巴比倫典藏庫(英語:Yale Babylonian Collection)的名字縮寫,「7289」是這件文物在其中的編號。
內容
黏土板上記有一個畫著其兩條對角線的正方形,正方形的一側被標上了六十進制數字「30」,對角線被標上兩個六十進制數字:
因為巴比倫的六十進制計數法在進位方面並不明確,另一種解釋是方形邊長是。這麼解釋的話,對角線上的數是,即的近似估計值,估計的誤差也比二百萬分一還小。[2]
大衛·福勒和埃莉諾·羅賓遜如此寫道,「這樣我們就有了一個藉幾何解釋的倒數對(英語:a reciprocal pair of numbers)...」。他們指出,儘管這種解釋在和倒數的關鍵性[註 1]聯繫起來後,很吸引人,但仍應謹慎對待這一說法。[2]
呈現形式
儘管YBC 7289經常以沿著對角線的方向示人[註 2] ,巴比倫人畫正方形時約定俗成,各邊水平豎直繪製,帶有數字的邊在圖頂部[4]。這塊小黏土板渾圓的形狀和上面的大字體具有演算草稿的特徵,這種泥板特徵很典型,是被用來協助演算困難問題的,學生在使用時可握於掌中[1][2]。
這名學生好像是從另一塊黏土板上抄來了√2的六十進制值,但這個逐步的演算過程見於另一塊巴比倫黏土板BM 96957 + VAT 6598上[2]。
在1945年,奧托·紐格伯爾和亞伯拉罕·薩克斯最早發現泥板的數學意義[2][5]。「這塊泥板呈現給我們古典時代全世界最高的計算精度」,精度相當於六位十進制有效數字。[1]其它黏土板有關於計算六邊形和七邊形面積的,用到了√3這種更複雜的代數數的估算值。[2]這樣精確的一個√3的估計可解釋,古埃及人在建設金字塔時計算各維度的尺寸時為何這麼準確。YBC 7289上所寫的數字精度更高,所以很明確的是上記的各種代數數的近似值是一種尋常計算的結果,而不只是一個估計值[6]。
托勒密在《天文學大成》一書中亦應用了巴比倫人對√2的六十進制估計值[7][8]。托勒密沒說他的這個值是從哪裡來的,也許這個值當時已經是人盡皆知了[7]。
黏土板的發掘和策展
現在已經無從考證YBC 7289從美索不達米亞的何處而來,但它的形狀和書寫風格像是美索不達米亞南部的,其作成時間作成的時間在公元前18世紀到公元前16世紀間[1][2]。
1909年,耶魯大學從巴比倫黏土板藏家J·P·摩根處獲捐這些文物,從他宅邸運來的這些遺贈組成了耶魯巴比倫典藏[1][9]。 耶魯的文化遺產保育學院已經為泥板建立了數字模型,可用於3D列印[9][10][11]。
來源
註釋
參見
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.