来自维基百科,自由的百科全书
在數學中,映射的限制 是一個新的映射,記作 或者 ,它是通過為原來的映射 選擇一個更小的定義域 來得到的。反過來,也稱映射 是映射 的擴張。
![]() | 此條目可參照日語維基百科相應條目來擴充。 |
設 是一個集合 到集合 的映射。如果 是 的子集,那麼稱滿足的映射[1] 是映射 在 上的限制。不正式地說, 是和 相同的映射,但只定義在 上。
如果將映射 看作一種在笛卡爾積 上的關係 ,然後 在 上的限制可以用它的圖像來表示:
其中 表示圖像 中的有序對。
映射 稱為另一映射的 的擴張,若且唯若 。也就是說同時滿足下面兩個條件:
數學上經常需要將一個具有指定性質的映射的定義域擴大,並要求擴張後的結果仍具有該性質,但擴張後。如尋找一個線性映射 的擴張映射 ,且 仍是線性的,這時說 是 的一個線性擴張,或者說;尋找一個連續映射 的擴張映射 ,且 仍連續,則稱為進行了連續擴張;諸如此類。
若某函數存在反函數,其映射必為單射。若映射 非單射,可以限制其定義域以定義其一部分的反函數。如:
因為 ,故非單射。但若將定義域限制到 時該映射為單射,此時有反函數
(若限制定義域至 ,輸出 的負平方根的函數為反函數。)另外,若允許反函數為多值函數,則無需限制原函數的定義域。
點集拓撲學中的粘接引理聯繫了函數的連續性與限制函數的連續性。
基於此結論,粘接在拓撲空間中的開或閉集合上定義的兩個連續函數,可以得到一個新的連續函數。
層將函數的限制推廣到其他物件的限制。
層論中,拓撲空間的每個開集,有另一個範疇中的物件與之對應,其中要求滿足某些性質。最重要的性質是,若一個開集包含另一個開集,則對應的兩個物件之間有限制態射,即若,則有態射,且該些態射應仿照函數的限制,滿足下列條件:
所謂拓撲空間上的層,就是該些物件和態射組成的整體。若僅滿足前兩項條件,則稱為預層。
Seamless Wikipedia browsing. On steroids.