數學上的赫維茲矩陣或赫爾維茨矩陣(Hurwitz matrix)或勞斯–赫爾維茨矩陣(Routh–Hurwitz matrix),或是工程學中穩定性矩陣,都是結構化的實數方塊矩陣,由實係數多項式的係數所組成。
另外,在工程學及穩定性理論中的赫維茲矩陣(Hurwitz matrix)或赫維茲穩定矩陣(Hurwitz stable matrix),是指每個特徵值其實部都為負值的矩陣。
給定一個實係數的多項式
則方塊矩陣
即為對應多項式的赫維茲矩陣,此多項式是阿道夫·赫維茲在1895年提出的,他提到 實係數多項式是穩定多項式(所有的根實部都為負值)若且唯若赫維茲矩陣的所有矩陣的首主序子式均為正:
以下省略。
子式稱為赫維茲判別式。
- Hurwitz, A. Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Teilen besitzt. Mathematische Annalen, Leipzig. 1895, (Nr. 46): 273–284.
- Gantmacher, F.R. Applications of the Theory of Matrices. Interscience, New York. 1959, 641 (9): 1–8.
- Hassan K. Khalil (2002). Nonlinear Systems. Prentice Hall.
- Siegfried H. Lehnigk, On the Hurwitz matrix[永久失效連結], Zeitschrift für Angewandte Mathematik und Physik (ZAMP), May 1970
- Bernard A. Asner, Jr., On the Total Nonnegativity of the Hurwitz Matrix, SIAM Journal on Applied Mathematics, Vol. 18, No. 2 (Mar., 1970)
- Dimitar K. Dimitrov and Juan Manuel Peña, Almost strict total positivity and a class of Hurwitz polynomials, Journal of Approximation Theory, Volume 132, Issue 2 (February 2005)
本條目含有來自PlanetMath《Hurwitz matrix》的內容,版權遵守創用CC協議:署名-相同方式共享協議。