Loading AI tools
来自维基百科,自由的百科全书
在粒子物理學中,膠球是一種假想中的複合粒子,它僅僅由膠子組成,而不包含任何價夸克。膠子的這種特殊的束縛態是可能的,因為膠子帶有色荷,因此能夠通過強核力交互作用。因為膠球總是與其它普通的介子束縛態一同產生,所以其很難在粒子加速器中被探測到。理論研究表明通過現有的對撞機技術,人們完全有能力達到膠球能夠被產生的能量水平。但是,由於上述的探測困難,直至2012年,膠球依然沒有被觀測到並確定地認證。
根據量子色動力學(QCD),膠球可以為兩類,一類是常規膠球,具有與普通介子一樣的常規量子數,另一類是奇特膠球,攜帶與普通介子不同的奇特量子數。基於QCD的要求,兩膠子膠球的C宇稱必定為正;三膠子膠球C宇稱可正可負。奇異子(Odderon)C宇稱為-1,與其對應的為坡密子(Pomeron)C宇稱為+1。膠球是粒子物理標準模型中最重要的預測之一,是標準模型預測的唯一的總角動量(JPC)為2或3的粒子。
理論學家通過多種理論方案研究膠球問題,例如:格點QCD理論、庫侖規範理論、流管模型、口袋模型、AdS/QCD和QCD求和規則等方法。理論上預言最輕的純量兩膠子膠球(JPC=0++)的質量介於1~2 GeV之間,其他量子數膠球質量會高於2 GeV。 格點場論提供了一種從第一原則理論上研究膠球的能譜的方法。莫寧斯塔和皮爾登在1999年成功計算了QCD中的幾種最輕的,沒有動力學夸克的膠球。其中3中最輕的膠球如下表所示。動力學夸克的存在會輕微影響下表中的數據,但同時也會是計算更加困難。之後的QCD(格點和求和法則)計算發現最輕的膠球的質量的數量級應該在1000–1700 MeV範圍之內。
粒子加速器實驗通常能夠識別的不穩定的複合粒子的精度約為10 MeV/c^2,但是並不能夠精確的確定粒子的性質。在一些實驗中有一些可能的粒子被檢測到,但它們在一些研究中被認為是可疑的。儘管證據是不明確的,但一些候選的粒子共振態,可能是膠球。
向量,偽向量或張量膠球的候選粒子:
純量膠球的候選粒子:
其它膠球的候選粒子:
在LEP實驗的膠子噴柱表明膠球存在的理論預期超過40%。[2]許多候選粒子已經至少經過十八年的積極研究。[3]gluex實驗計劃開始於2014,是專門設計用來更明確產生膠球的實驗證據。[4]
2021年3月5日,大型強子對撞機(LHC)的TOTEM合作組與費米實驗室太電子伏質子加速器(Tevatron)的DØ合作組聯合宣布發現了奇異子的實驗證據,理論分析認為奇異子在正反質子散射和質子-質子散射過程中的貢獻會不一樣,現在,通過比較TOTEM質子-質子實驗的彈性微分散射截面的結果和DØ正反質子實驗,研究人員發現了奇異子的顯著特徵,首次探測到了奇異子存在的實驗信號。由於實驗測到的只是奇異子對微分散射截面的貢獻,還不能確定它(們)的質量和其他量子數,甚至不能確定有幾個奇異子對實驗結果有貢獻,研究者嚴謹地稱此次實驗結果只是間接證實了奇異子(膠球)的存在。[5][6]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.