Loading AI tools
来自维基百科,自由的百科全书
在數學分支線性代數之中,向量空間中一個向量集合的線性生成空間(linear span,也稱為線性包 linear hull),是所有包含這個集合的線性子空間的交集,從而一個向量集合的線性生成空間也是一個向量空間。
給定域 K 上的向量空間 V,集合 S(不必有限)的生成空間定義為所有包含 S 的線性子空間 V 的交集 W,稱 W 為由 S(或 S 中的向量)生成的子空間。
如果 是 V 的有限子集,則生成空間為
S 的生成空間也可定義為 S 中元素的所有有限線性組合組成的集合。因為容易驗證:S 中向量的有限線性組合的集合是包含 S 的一個向量空間,反之任何包含 S 的向量空間必然都包含 S 中向量的有限組合,故兩個定義是等價的。
如果 S 的生成空間是 V,則 S 稱為 V 的生成集合(spanning set)。V 的一個生成集合不必是 V 的一組基,因其不必是線性無關的。但是,對給定向量空間的極小生成集合一定是一組基。換句話說,V 的生成集合是一組基若且唯若 V 的任何向量可以唯一的寫成生成集合中一些元素的線性組合。
如果 V 是無限維向量空間,S 是無窮集合,則 S 中的無限個向量的線性組合(如果收斂的話)不一定屬於 S 的生成空間。
定理 1:向量空間 V 的非空集合 S 生成的子空間是 S 中向量的所有有限線性組合;
定理 2:設 V 是一個有限維向量空間,則 V 的任何生成集合 S 去掉一些向量(如果必要的話)可以簡化為 V 的一組基。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.