Remove ads
来自维基百科,自由的百科全书
奈米技術(英語:Nanotechnology)是一門應用科學,其目的在於研究於奈米規模時,物質和設備的設計方法、組成、特性以及應用。奈米科技是許多如生物、物理、化學等科學領域在技術上的次級分類,美國國家奈米科技啟動計劃將其定義為「1至100奈米尺寸尤其是現存科技在奈米規模時的延伸」。奈米科技的世界為原子、分子、高分子、量子點集合,並且被表面效應所掌控,如范德瓦耳斯力、氫鍵、電荷、離子鍵、共價鍵、疏水性、親水性和量子穿隧效應等,而慣性和湍流等巨觀效應則小得可以被忽略掉。舉個例子,當表面積對體積的比例劇烈地增大時,開起了如催化學等以表面為主的科學新的可能性。
微小性的持續探究使得新的工具誕生,如原子力顯微鏡和掃描隧道顯微鏡等。結合如電子束微影之類的精確程序,這些設備將使我們可以精密地運作並生成奈米結構。奈米材質,不論是由上至下製成(將塊材縮至奈米尺度,主要方法是從塊材開始通過切割、蝕刻、研磨等辦法得到儘可能小的形狀(比如超精度加工,難度在於得到的微小結構必須精確)。或由下至上製成(由一顆顆原子或分子來組成較大的結構,主要辦法有化學合成,自組裝和定點組裝(positional assembly)。難度在於宏觀上要達到高效穩定的質量,都不只是進一步的微小化而已。物體內電子的能量量子化也開始對材質的性質有影響,稱為量子尺度效應,描述物質內電子在尺度劇減後的物理性質。這一效應不是因為尺度由巨觀變成微觀而產生的,但它確實在奈米尺度時占了很重要的地位。
奈米科技的神奇之處在於物質在奈米尺度下所擁有的量子和表面現象,因此可以有許多重要的是應用,也可以製造許多有趣的材質。
1959年12月29日物理學家理察·費曼在加州理工學院出席美國物理學會年會,作出著名的演講《在底部還有很大空間》,提出一些奈米技術的概念,雖然在當時仍未有「奈米技術」這個名詞。他以「由下而上的方法」(bottom up)出發,提出從單個分子甚至原子開始進行組裝,以達到設計要求。他說道,「至少依我看來,物理學的規律不排除一個原子一個原子地製造物品的可能性。」並預言,「當我們對細微尺寸的物體加以控制的話,將極大得擴充我們獲得物性的範圍。」這被視為是奈米技術概念的靈感來源。
1962年,日本東京大學的久保亮五教授提出了量子限制理論,用來解釋金屬奈米粒子的能階不連續,這是很重要的里程碑,使得人們對奈米粒子的電子結構、型態和性質有了進一步的了解。
而奈米科技一詞的定義是日本東京理科大學的谷口紀男教授在1974年提出[1][2][3]。
1981年,掃描隧道顯微鏡的發明被廣泛視為奈米元年。
1980年代,IBM的安貝旭等人做出多晶體的金環,金環直徑小於400奈米,線寬在數十奈米左右。當外加磁場時,金環產生震盪電阻,這種現象稱作磁阻效應,而這種效應明顯和環的小尺寸有關,主要是金環內的電子受到金環奈米尺寸的干擾,而在環內兩側震盪。一般塊狀金是電的良導體,電阻值很小,不受磁場的影響。但上述奈米金環的結果顯示,當金粒子小到奈米尺度時,其物理性質與大尺寸時不同,這個現象可以用來製作新的奈米電子元件。
1984年德國葛萊特等人利用惰性氣體蒸發凝結法,製得鐵、銅、鉛及二氧化鈦的奈米粒子。其中,二氧化鈦的奈米顆粒具有良好的延展性,可以改善陶瓷材料的脆性。
1982年瑞士IBM公司的科學家格爾德·賓寧及海因里希·羅雷爾,開發出掃描隧道顯微鏡,它主要是利用一根非常細的鎢金屬探針,針尖電子會跳到待測物體表面上形成穿隧電流,同時,物體表面的高低會影響穿隧電流的大小,依此來觀測物體表面的形貌。四年後,也就是1986年,這兩位科學家和發明穿透式電子顯微鏡的恩斯特·魯斯卡共享諾貝爾物理獎。
到了1985年,理察·斯莫利、羅伯特·柯爾和哈羅德·克羅托在石墨上利用雷射,讓它蒸發而成碳黑,純化後得到的碳簇置於質譜儀中分析,發現兩種不明物質,質量分別是碳的60倍與70倍,因此這兩種不明物質被稱作C60與C70。 C60的形狀像一顆足球,有20個六邊形及12個五邊形的面,共32面的封閉球體。事實上,科學家在太空收集宇宙塵埃時,早就發現C60、C70等物質。所以上述三位科學家是最早在地球上製造C60及C70的人,他們也共同獲得了1996年的諾貝爾獎。
1985年,史丹佛大學的奎特教授以及IBM的格爾德·賓寧及海因里希·羅雷爾共同發明了原子力顯微鏡。它也是利用一根探針來掃描物體的表面,當探針靠近待測物體時,探針與物體之間產生作用力,這作用力可以是吸引力或排斥力,並可藉此分析物體表面的形貌。最重要的是,這種儀器可觀察的物體不僅是半導體或金屬,也可以是絕緣體。現在很多生物樣品的觀察,已經大量使用這種設備。
1988年,拜必序的研究團隊開發出鐵鉻(Fe/Cr)奈米多層膜,在低溫下改變磁場,電阻會隨著產生急遽的改變。相對來說,一般磁性金屬(或合金)的電阻是不容易隨磁場的改變而變化的。到目前為止,已經發現鐵銅(Fe/Cu)、鐵銀(Fe/Ag)、鐵鋁(Fe/Al)、鐵金(Fe/Au)、鈷銅(Co/Cu)、鈷銀(Co/Ag)、鈷金(Co/Au)等奈米多層膜都具有這種效應。
1990年,美國IBM公司的艾格勒利用這種儀器,把35個氙原子(xenon,化學符號是Xe)排成IBM三個字母。這是人類歷史上首次操縱原子,用原子或分子製造機器,也不再是夢想。
1991年,克雷需莫和霍夫曼發展出一次可以做出數公克重C60的方法。現在,科學家也嘗試利用C60的性質製成各種藥物。
1996年霍伊兒也合成出二氧化鈦(TiO2)奈米管。二氧化鈦本身是一個極佳的光觸媒材料,廣泛應用在醫療保健,例如消滅細菌或是殺死病毒。開發出奈米管狀的二氧化鈦,應用範圍也會更多樣化。目前,科學家已嘗試把二氧化鈦奈米粒子或奈米管應用在光敏化有機太陽電池上,做為光電轉換材料,現在已經可以達到實用水準。
2001年在日本筑波舉行的「奈米碳管發現十周年」研討會中,韓國三星公司展示用奈米碳管做成的場發射全彩色電視螢幕。這個電視的螢幕是由多層壁奈米碳管的前端,產生場發射電子做為電子源,而應用在平面顯示器上。至於醫療用小型X光產生裝置的電子源,也可以應用奈米碳管。
奈米科技已被視為新一波產業革命的源頭技術,歐美日本等國家的政府部門,近年來均編列大幅預算,推動國家級奈米基礎科學、工程技術之研發;學術界及產業界亦相繼投注大量人力資金於這場奈米科技的全球競賽中,希冀於專利與產品開發上搶得先機。
美國,在1993年成立第一個奈米技術研究機構[來源請求],2000年七月,美國政府向國會提出國家型奈米科技推動與落實計畫書(The National Nanotechnology Initiative:The Initiative and Its Implementation Plan)。
2000~2001年,各國相繼針對該國產業現況,紛紛提出奈米科技發展計畫。日本成立「奈米材料研究所」(Tsukuba)、歐盟成立「奈米電子技術聯盟」(IMEC)、德國成立六個奈米技術卓越群、中國(北京)成立奈米國家科研中心,台灣工業技術研究院亦於2002年一月,成立奈米科技研發中心。
全球有30餘國規劃及投入奈米領域研發,投入範圍包括物理、生技及電子等前瞻領域研究,及奈米新材料的製造與特性開發[來源請求]。產業界也透過新建立的奈米材料特性及關鍵技術,開發新產品及改善產品性能,來提升競爭力。
目前為止,奈米科技尚處於一個國際間相互既交流又有點競爭的萌芽階段。
廣義上,奈米技術包括多用來製造尺寸在100奈米以下的結構的技術。包括那些用來製作奈米線的;包括那些用在半導體製造工業上的技術,如深紫外線光刻、電子束光刻、聚焦粒子束光刻、奈米印刷光刻、原子層沉積和化學氣相法;更進一步還包括分子自組裝技術。但是這些技術早就出現在奈米時代之前,而不是專為了奈米技術而設計,也不是奈米技術研究的結果。
現在以「奈米」冠名的那些技術,對最有野心的和革命性的分子製造卻毫無關係,或者說是遠遠不能達到要求。這樣,「奈米」可能被科學家們和企業家們濫用而形成「奈米泡沫」,而對那些更有野心和遠見的工作毫無益處。
美國國家科學基金資助了研究者David Berube對奈米領域進行整體上的研究,後者的研究成果出版成為了專著《奈米騙局:奈米技術喧囂背後的真相》[4]。這個由NNI主席Mihail Roco攝寫序言的著作得出的結論是:許多被當作「奈米技術」出售的產品,其實只是就材料科學的新瓶裝舊酒,直接導致一個僅僅是售賣的奈米管,奈米線或類似產品的奈米技術工業,最後的結果是少數售賣大量低端產品的供應商。
隨著尺寸的減小,一系列的物理現象顯現出來。這其中包括統計力學效應和量子力學效應。並且,同宏觀系統相比,許多物理性質會改變。一個典型的例子是材料的表面體積比。奈米技術可以視作在傳統學科上對這些性質詳盡描述的發展。進一步講,傳統的學科可以被重新理解為奈米技術的具體應用。這種想法和概念上的互動對這個領域的發展起到了推動作用。廣義上講,奈米技術是科學和技術在理解和製造新材料新器械方向上的推演和應用。這些新材料和技術大體上就是物理性質在微尺度上的應用。
和這些系統的定性研究相關的領域是物理、化學和生物,以及機械工程和電子工程。但是,由於奈米科技的多學科和學科交叉的特性,物理化學、材料科學和生物醫學工程的學科也被視作奈米技術重要和不可缺少的組成部分。奈米工程師們住眼觀新材料的設計,合成,定性描述和應用。例如在分子結構上的聚合物製造,在表面科學基礎上的計算機晶片分布設計,都是奈米科技在當代的應用例子。在奈米科技中,膠狀懸浮也有很重要的地位。
材料在奈米尺度下會突然顯現出與它們在宏觀情況下很不相同的特性,這樣可以使一些獨特的應用成為可能。例如,不透明的物質變為透明(銅);惰性材料變成催化劑(鉑);穩定的材料變得易燃(鋁);在室溫下的固體變成液體(金);絕緣體變成導體(矽)。物質在奈米尺度的獨特量子和表面現象造就了奈米科技的許多分支。
當代電子和中子的發現讓人類知道還有比我們能想像到的最小的東西還要小的物質時,對奈米世界的好奇心已經萌發。當然,1980年代,可以研究奈米結構的早期工具的發展才真的使奈米科學和奈米技術成為可能。
原子力顯微鏡和掃描隧道顯微鏡的這兩種早期的掃描探針促成了奈米時代的到來。同時,基於STM的許多其它類型的掃描探針顯微鏡,使得觀測奈米結構成為可能。
探針的探頭可以用來操縱奈米結構(這種工藝叫做位置組裝)。但是這種過程太慢了,從而到導致了各種奈米光刻技術的發展,例如蘸筆奈米光刻術,電子束曝光和奈米壓印術。
光刻是自上而下的製作技術,用來把大塊物體縮小到奈米尺寸。相對的,自下而上的技術直接用原子或分子搭建更大的結構。這些技術包括化學合成,自組裝和位置組裝。
綜上所述,奈米科技實際上涵蓋了一切在奈米範圍的物理、化學的技術和工藝,說它包羅萬象也不算過分。不過現在坊間多在炒作概念,很多都局限於實驗室的理論階段,比較現實的是機械方面的潤滑劑,化工方面的催化劑,還有醫學方面的定點超效藥劑。
一、奈米晶體(nanocrystalline materials)
二、奈米粉體
三、奈米孔隙材料(nanoporous materials)
四、奈米纖維與奈米線(nanofibers & nanowires)
五、奈米碳管
和生物技術一樣,奈米科技也有很多環境和安全問題(比如尺寸小是否會避開生物的自然防禦系統,還有是否能生物降解、毒性副作用如何等等)。
奈米技術的潛在危害可以廣義的劃分為下面幾個方面:
奈米材料(包含有奈米顆粒的材料)本身的存在並不是一種危害。只有它的一些方面具有危害性,特別是他們的移動性和增強的反應性。只有某些奈米粒子的某些方面對生物或環境有害,我們才面臨一個真的危害。
要討論奈米材料對健康和環境的影響,我們必須區分兩類奈米結構:
這些自由奈米粒子可能是奈米尺寸的單元素,化合物,或是複雜的混合物,比如在一種元素上鍍上另外一張物質的「鍍膜」奈米粒子或叫做「核殼」奈米粒子。
目前,公認的觀點是,雖然我們需要關注有固定奈米粒子的材料,自由奈米粒子是最緊迫關心的。
因為,奈米粒子同它們日常的對應物實在是區別太大了,它們的有害效應不能從已知毒性推演而來。這樣討論自由奈米粒子的健康和環境影響具有很重要的意義。
更加複雜的是,當我們討論奈米粒子的時候,我們必須知道含有的奈米粒子的粉末或液體幾乎從來不會單分散化,而是具有一定範圍內許多不同尺寸。這會使實驗分析更加複雜,因為大的奈米粒子可能和小的有不同的性質。而且,奈米粒子具有聚合的趨勢,而聚合的奈米粒子具有同單個奈米粒子不同的行為。
奈米顆粒進入人體有三種途徑:吸入、吞咽及從皮膚吸收或在醫療過程中被有意的注入(或由植入體釋放)。一旦進入人體,它們具有高度的可移動性。在一些個例中,它們甚至能穿越血腦屏障。
奈米粒子在器官中的行為仍然是需要研究的一個大課題。基本上,奈米顆粒的行為取決於它們的大小,形狀和同周圍組織的相互作用活動性。它們可能引起噬菌細胞(吞咽並消滅外來物質的細胞)的「過載」,從而引發防禦性的發燒和降低機體免疫力。它們可能因為無法降解或降解緩慢,而在器官里集聚。還有一個顧慮是它們同人體中一些生物過程發生反應的潛在危險。由於極大的表面積,暴露在組織和液體中的奈米粒子會立即吸附他們遇到的大分子。這樣會影響到例如酶和其他蛋白的調整機制。
主要擔心奈米顆粒可能會造成未知的危害。
奈米技術的使用也存在社會學風險。在儀器的層面,也包括在軍事領域使用奈米技術的可能性。(例如,在MIT士兵奈米技術研究所[6]研究的裝備士兵的植入體或其他手段,同時還有通過奈米探測器增強的監視手段。)
在結構層面,奈米技術的批評家們指出奈米技術打開了一個由產權和公司控制的新世界。他們指出,就象生物技術的操控基因的能力伴隨著生命的專利化一樣,奈米技術操控分子的技術帶來的是物質的專利化。過去的幾年裡,獲得奈米尺度的專利像一股淘金熱。2003年,超過800奈米相關的專利權獲得批准,這個數字每年都在增長。大公司已經壟斷了奈米尺度發明與發現的廣泛的專利。例如,NEC和IBM這兩家大公司持有奈米碳管這一奈米科技基石之一的基礎專利。奈米碳管具有廣泛的運用,並被看好對從電子和計算機、到強化材料、到藥物釋放和診斷的許多工業領域都有關鍵的作用。奈米碳管很可能成為取代傳統原材料的主要工業交易材料。但是,當它們的用途擴張時,任何想要製造或出售奈米碳管的人,不管應用是什麼,都要先向NEC或者IBM購買許可證。
高級奈米技術,有時被稱為分子製造,用於描述分子尺度上的奈米工程系統(奈米機器)。無數例子證明,億萬年的進化能夠產生複雜的、隨機優化的生物機器。在奈米領域中,我們希望使用仿生學的方法找到製造奈米機器的捷徑。然而,K Eric Drexler和其他研究者 (頁面存檔備份,存於網際網路檔案館)提出:高級奈米技術雖然最初會使用仿生學輔助手段,最終可能會建立在機械工程的原理上。(另見機械合成。)
在2005年8月,50名來自不同領域的國際專家被奈米技術責任中心(Center for Responsible Nanotechnology)組織起來研究分子奈米技術的社會內涵[1] (頁面存檔備份,存於網際網路檔案館) 。
為了決定分子奈米科技的發展道路,Battelle Memorial Institute和Foresight Institute正在領導制定一個基礎廣泛的發展規劃項目[2] (頁面存檔備份,存於網際網路檔案館) 。預計2007年早些時候完成。
設計和製造和自然細胞甚至器官相仿的人工組織是具有潛在可能的。
美國國家科學委員會(National Science Board)於2003年底批准「國家奈米科技基礎結構網路計畫」(National Science Board Approves Award for a National Nanotechnology Infrastructure Network,簡稱NNIN),將由美國13所大學共同建構支持全國奈米科技與教育的網路體系。該計畫為期5年,於2014年一月開始執行,將提供整體性的全國性使用技能以支持奈米尺度科學工程與技術的研究與教育工作。預估5年間至少投資700億美元的研究經費。計畫目的不僅在提供美國研究人員頂尖的實驗儀器與設備,並能訓練出一批專精於最先進奈米科技的研究人員。
1. 美國發展最新奈米細胞製造技術
2. DNA檢測晶片的進展
3. 地下水污染改善之研究
4. 啟動癌症奈米科技計畫
1. 歐盟的國際奈米科學研究政策
2. 創新接繼中心
1. 日本理研的奈米科學研究現況
2. 日本提高奈米科技預算與產業合作(JAPAN BOOSTS NANOTECHNOLOGY BUDGET AND INDUSTRIAL COOPERATION)
1. 韓國的奈米科技策略
2. 韓國預測國際市場對奈米紡織品的需求將快速增加
3. 南韓在奈米科技的發展幾乎完全集中在微電子產業
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.