大部分火星表面都披覆了一層厚厚的富冰覆蓋層,該覆蓋層是過去多次從天空飄落的冰核塵埃所組成[1] [2] [3]。在部分地區可看到覆蓋層中的一些分層[4]。
-
HiWish計劃下高解析度成像科學設備顯示的
陶瑪西亞區覆蓋層中的堆積分層,覆蓋層可能是由不同氣候下降落的雪和塵埃形成。
-
HiWish計劃下高解析度成像科學設備顯示的
法厄同區一座隕坑平整的覆蓋層部分。沿隕坑外側邊緣,可看到覆蓋層中的分層,表明該覆蓋層是在過去多次堆積而成,這些分層將在下一張圖像中被放大。
-
前一幅
法厄同區覆蓋層分層圖像的放大,可看到4到5層分層。
-
HiWish計劃下高解析度成像科學設備顯示的
塞壬高地披覆及未披覆覆蓋層的地表。
-
HiWish計劃下高解析度成像科學設備顯示的
埃里達尼亞區覆蓋層。
-
HiWish計劃下高解析度成像科學設備顯示的
埃里達尼亞區披覆及未披覆氣候變化時從天空落下的覆蓋層地表近景。
-
HiWish計劃下高解析度成像科學設備拍攝的
刻布壬尼亞區覆蓋層近景,覆蓋層可能由過去氣候條件下從天空降落的冰及塵埃組成。
-
HiWish計劃下高解析度成像科學設備顯示的
希臘區含分層的平坦覆蓋層。
-
HiWish計劃下高解析度成像科學設備顯示的
伊斯墨諾斯湖區覆蓋層近景,箭頭指示隕石坑邊緣突出的覆蓋層厚度。
-
HiWish計劃下高解析度成像科學設備顯示了伊斯墨諾斯湖區覆蓋層厚度的近景。
-
HiWish計劃下高解析度成像科學設備顯示的
希臘區覆蓋層近景。
-
HiWish計劃下高解析度成像科學設備顯示的
希臘區覆蓋層邊緣近景。
從天空降落的冰核塵埃,很好地證明了這層覆蓋層富含水冰。許多表面常見的多邊形形狀也表明土壤中富含冰。2001火星奧德賽號發現了高含量的氫(可能來自水)[5][6] [7] [8] [9]。從軌道上進行的熱輻射測量表明了冰的存在[10] [11];鳳凰號火星探測器降落在一片多邊形區域中,它發現了水冰,並進行了直接觀測[12][13],事實上,它的著陸火箭暴露了純冰。理論預測在幾厘米厚的土壤下會發現冰。該覆蓋層被稱為「緯度相關覆蓋層」,因為它的出現與緯度有關。正是這層覆蓋層後來的破裂,才形成了多邊形地面。這種富含水冰地面的破裂是根據物理作用所預測的[14][15]
[16] [17][18] [19][20]。另一種表面被稱為「腦紋地形」,因為它看起來像人腦的表面。當兩種區域同時出現時,腦紋地形高度較多邊形地面更低。
儘管相鄰下層的腦紋地形參差不齊,但從頂層開始,多邊形層相當平整。據信,含多邊形的覆蓋層深度需達10-20米,才能形成平整表面。在所有的冰消失之前,覆蓋層會持續很長一段時間,因為頂部會形成一層保護性的滯留沉積物[21] [22] [23]。覆蓋層中含有冰和塵埃。當一定數量的冰升華後,塵埃停留在頂部,形成滯留沉積層[24] [25] [26] [27]。
根據多邊形地面的總面積計算,估計覆蓋層中鎖住的總水量約有10米深,這一體積相當於在整個星球覆蓋了一層2.5米深的水。但相比之下,地球北極和南極冰蓋融化的水則可覆蓋整個星球30米深[28]。
覆蓋層形成於火星氣候與現在不同的時期[29] [30] [31],火星自轉軸的傾斜或傾角變化很大[32] [33] [34],而地球的傾斜變化則很小,因為我們相當大的月球穩定了地球。火星只有兩顆非常小衛星,它們沒有足夠的引力來穩定火星的傾斜。當火星傾斜度超過40度(今天是25度)左右時,冰就會沉積在某些緯度帶上,而這些緯度帶現今存在著大量的覆蓋層 [35] [36]。
Hecht, M. 2002. Metastability of water on Mars. Icarus 156, 373–386
Mustard, J., et al. 2001. Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature 412 (6845), 411–414.
Pollack, J., D. Colburn, F. Flaser, R. Kahn, C. Carson, and D. Pidek. 1979. Properties and effects of dust suspended in the martian atmosphere. J. Geophys. Res. 84, 2929-2945.
存档副本. [2021-08-11]. (原始內容存檔於2017-09-02).
Boynton, W., and 24 colleagues. 2002. Distribution of hydrogen in the nearsurface
of Mars: Evidence for sub-surface ice deposits. Science 297, 81–85
Kuzmin, R, et al. 2004. Regions of potential existence of free water (ice) in the near-surface martian ground: Results from the Mars Odyssey High-Energy Neutron Detector
(HEND). Solar System Research 38 (1), 1–11.
Mitrofanov, I. et al.
2007a. Burial depth of water ice in Mars permafrost subsurface. In: LPSC 38,
Abstract #3108. Houston, TX.
Mitrofanov, I., and 11 colleagues. 2007b. Water ice permafrost on Mars: Layering
structure and subsurface distribution according to HEND/Odyssey and MOLA/
MGS data. Geophys. Res. Lett. 34 (18). doi:10.1029/2007GL030030.
Mangold, N., et al. 2004. Spatial
relationships between patterned ground and ground ice detected by the
neutron spectrometer on Mars. J. Geophys. Res. 109 (E8). doi:10.1029/
2004JE002235.
Feldman, W., and 12 colleagues. 2002. Global distribution of neutrons from Mars:Results from Mars Odyssey. Science 297, 75–78.
Feldman, W., et al. 2008.North to south asymmetries in the water-equivalent hydrogen distribution at high latitudes on Mars. J. Geophys. Res. 113. doi:10.1029/2007JE003020.
Mutch, T.A., and 24 colleagues, 1976. The surface of Mars: The view from the Viking2 lander. Science 194 (4271), 1277–1283.
Mutch, T., et al. 1977. The geology of the Viking Lander 2 site. J. Geophys. Res. 82, 4452–4467.
Levy, J., et al. 2009. Thermal contraction crack polygons on Mars: Classification, distribution, and climate implications from HiRISE observations. J. Geophys. Res. 114. doi:10.1029/2008JE003273.
Washburn, A. 1973. Periglacial Processes and Environments. St. Martin’s Press,New York, pp. 1–2, 100–147.
Mellon, M. 1997. Small-scale polygonal features on Mars: Seasonal thermal contractioncracks in permafrost. J. Geophys. Res. 102, 25,617-625,628.
Mangold, N. 2005. High latitude patterned grounds on Mars: Classification, distribution
and climatic control. Icarus 174, 336–359.
Marchant, D., J. Head. 2007. Antarctic dry valleys: Microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus 192, 187–222
Marchant, D., et al. 2002. Formation of patterned ground
and sublimation till over Miocene glacier ice in Beacon valley, southern Victoria
land, Antarctica. Geol. Soc. Am. Bull. 114, 718–730.
Mellon, M., B. Jakosky. 1995. The distribution and behavior of Martian ground ice during past and present epochs. J. Geophys. Res. 100, 11781–11799.
Schorghofer, N., 2007. Dynamics of ice ages on Mars. Nature 449, 192–194.
Madeleine, J., F. Forget, J. Head, B. Levrard, F. Montmessin. 2007. Exploring the northern mid-latitude glaciation with a general circulation model. In: Seventh International Conference on Mars. Abstract 3096.
Schorghofer, N., O. Aharonson. 2005. Stability and exchange of subsurface ice on
Mars. J. Geophys. Res. 110 (E05). doi:10.1029/2004JE002350.
Schorghofer, N., 2007. Dynamics of ice ages on Mars. Nature 449 (7159), 192–194
Head, J., J. Mustard, M. Kreslavsky, R. Milliken, D. Marchant. 2003.
Recent ice ages on Mars. Nature 426 (6968), 797–802.
Levy, J. et al. 2010. Thermal contraction crack polygons on Mars: A synthesis from HiRISE, Phoenix, and terrestrial analog studies. Icarus: 206, 229-252.
Mustard, J., et al. 2001. Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature 412 (6845), 411–414.
Kreslavsky, M.A., Head, J.W., 2002. High-latitude Recent Surface Mantle on Mars:
New Results from MOLA and MOC. European Geophysical Society XXVII, Nice.
Head, J.W., Mustard, J.F., Kreslavsky, M.A., Milliken, R.E., Marchant, D.R., 2003.Recent ice ages on Mars. Nature 426 (6968), 797–802.
name= Touma J. and J. Wisdom. 1993. The Chaotic Obliquity of Mars. Science 259, 1294-1297.
Laskar, J., A. Correia, M. Gastineau, F. Joutel, B. Levrard, and P. Robutel. 2004. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343-364.
Levy, J., J. Head, D. Marchant, D. Kowalewski. 2008. Identification of sublimation-type thermal contraction crack polygons at the proposed NASA Phoenix landing site: Implications for substrate properties and climate-driven morphological evolution. Geophys. Res. Lett. 35. doi:10.1029/2007GL032813.
Kreslavsky, M., J. Head, J. 2002. Mars: Nature and evolution of young,
latitude-dependent water-ice-rich mantle. Geophys. Res. Lett. 29, doi:10.1029/
2002GL015392.
Kreslavsky, M., J. Head. 2006. Modification of impact craters in the northern
plains of Mars: Implications for the Amazonian climate history. Meteorit. Planet.
Sci. 41, 1633–1646.