Remove ads
最著名的卡方檢定之一 来自维基百科,自由的百科全书
皮爾森卡方檢定(英語:Pearson's chi-squared test)是最有名卡方檢定之一(其他常用的卡方檢定還有葉慈連續校正、概似比檢定、一元混成檢定等等--它們的統計值之機率分配都近似於卡方分配,故稱卡方檢定)。「皮爾森卡方檢定」最早由卡爾·皮爾森在1900年發表,[1] 用於類別變數的檢定。科學文獻中,當提及卡方檢定而沒有特別指明類型時,通常即指皮爾森卡方檢定。
此條目可參照英語維基百科相應條目來擴充。 |
「皮爾森卡方檢定」的虛無假說(H0)是:一個樣本中已發生事件的次數分配會遵守某個特定的理論分配。
在虛無假說的句子中,「事件」必須互斥,並且所有事件總機率等於1。或者說,每個事件是類別變數(英語:categorical variable)的一種類別或級別(英語:level)。
簡單的例子:常見的六面骰子,事件=丟骰子的結果(可能是1~6任一個)屬於類別變數,每一面都是此變數的一種(一個級別)結果,每種結果互斥(1不是2, 3, 4, 5, 6; 2不是1, 3, 4 ...),六面的機率總和等於1。
「皮爾森卡方檢定」可用於三種情境的變項比較:擬合度檢定、同質性檢定和獨立性檢定。
不管哪個檢定都包含三個步驟:
當理論上的母體分配為每個類別機率一致時,即應適用離散型均勻分配的計算方法。 個觀察值於理論上應均勻分配在所有的 個欄位(類別)中,因此每個欄位(類別)的「理論次數」(或期望值次數)為:
自由度 。「」是總共要計算離差平方的個數(每個類別計算一次觀察值與理論值的差,再平方)。「」是因為對於計算而言只有一個限制條件:觀察值的個數總和為 。
在同一個個體(例如:同一個人)身上有兩個二元變數(X, Y),例如 X(男/女)和 Y(右撇子/左撇子),觀察兩個變數的相關性。虛無假說是:兩個變數呈統計獨立性。在本例中:性別與慣用手是獨立事件。
男 | 女 | 總計 | |
---|---|---|---|
右 | 43 | 44 | 87 |
左 | 9 | 4 | 13 |
總計 | 52 | 48 | 100 |
男 | 女 | 總計 | |
---|---|---|---|
右 | 43 (45.24) | 44 (41.76) | 87 |
左 | 9 (6.76) | 4 (6.24) | 13 |
總計 | 52 | 48 | 100 |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.