皮亞諾公理(英語:Peano axioms;義大利語:Assiomi di Peano),也稱皮亞諾公設,是義大利數學家朱塞佩·皮亞諾提出的關於自然數的五條公理系統。根據這五條公理可以建立起一階算術系統,也稱皮亞諾算術系統。[1]
此條目可參照英語維基百科相應條目來擴充。 (2020年7月23日) |
內容
皮亞諾的這五條公理用非形式化方法敘述如下:
- 0是自然數;
- 每一個確定的自然數a,都有一個確定的後繼數a' ,a' 也是自然數;
- 對於每個自然數b、c,b=c若且唯若b的後繼數=c的後繼數;
- 0不是任何自然數的後繼數;
- 任意關於自然數的命題,如果證明:它對自然數0是真的,且假定它對自然數a為真時,可以證明對a' 也真。那麼,命題對所有自然數都真。
其中,一個數的後繼數指緊接在這個數後面的數,例如,0的後繼數是1,1的後繼數是2等等;公理5保證了數學歸納法的正確性,從而被稱為歸納法原理。
若不將0視作自然數,則公理1,4,5中的「0」要換成「1」。
更正式的定義如下:
一個戴德金-皮亞諾結構為一滿足下列條件的三元組(X, x, f):
- X是一集合,x為X中一元素,f是X到自身的映射。
- x不在f的值域內。(對應上面的公理4)
- f為一單射。(對應上面的公理3)
- 若A為X的子集並滿足:
- x屬於A,且
- 若a屬於A,則f(a) 亦屬於A
- 則A = X。
正式定義可以用謂詞邏輯表示如下:
戴德金-皮亞諾結構可以描述為滿足所有以下條件的三元組 (S, f, e)
皮亞諾算術
皮亞諾算術(PA)的公理:
- 。
- 。
- ,對於在 PA 的語言中的任何公式 。
- 。
- 。
- 。
- 。
參見
參考資料
延伸閱讀
外部連結
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.