Loading AI tools
来自维基百科,自由的百科全书
土壤酸鹼值,又稱土壤pH值,是衡量土壤中酸度或鹼度所代表的意義。是溶液中氫離子活度的一種標度,也就是通常意義上溶液酸鹼程度的衡量標準。土壤pH被認為是土壤中的主要變量,因為它控制發生的許多化學過程。
它通過控制營養物的化學形式特異性地影響植物營養物的可用性。
大多數植物的最佳pH範圍在5.5和7.0之間,然而許多植物已經適應在該範圍之外的pH值下生長。
美國農業部,將土壤pH範圍分類如下: [1]
名稱 | pH範圍 |
---|---|
超酸性 | < 3.5 |
極酸性 | 3.5–4.4 |
極強酸性 | 4.5–5.0 |
強酸性 | 5.1–5.5 |
中等酸性 | 5.6–6.0 |
微酸性 | 6.1–6.5 |
中性 | 6.6–7.3 |
微鹼性 | 7.4–7.8 |
中等鹼性 | 7.9–8.4 |
強鹼性 | 8.5–9.0 |
非常強鹼性 | > 9.0 |
土壤中的酸性來自土壤溶液中吸附到土壤顆粒表面的氫離子和鋁離子。雖然酸度是指氫離子濃度,但鋁離子在酸性土壤中同樣起著重要作用。由於酸性環境下鋁離子(Al3+)與水分子(H2O)反應生成Al(OH)2+離子,並釋放氫離子(H+),在pH值介於4-6的範圍內,大約會有10-8mol/L的鋁離子參與反應。許多其他過程有助於形成酸性土壤,包括降雨量,肥料使用,植物根系活動和初級和次級土壤礦物的風化。酸性土壤也可能由污染物引起,例如酸雨和礦渣。
鹼性土壤具有高的鹼性陽離子飽和度 (K+, Ca2+, Mg2+ 和 Na+)。這是由於可溶性鹽,如鈉鹽的累積。所有鹽水和鈉鹼土壤具有高鹽濃度,鹽鹼土以鈣和鎂鹽為主,鈉鹼土以鈉為主。鹼性土壤的特徵在於存在碳酸鹽。在靠近表面的石灰石區域中的土壤是來自石灰石中的碳酸鈣的鹼性土壤,與土壤不斷混合。[3]這些地區的地下水源含有溶解的石灰石。
[5] 在酸性土壤中生長的植物可能會有各種各樣的症狀出現,包括鋁 (Al)、氫 (H)、和/或錳 (Mn)的毒性, 以及鈣 (Ca) 和鎂 (Mg)的營養缺乏。
鋁的毒性是酸性土壤中最普遍的問題。鋁存在於所有土壤中,但溶解的 Al3+ 對植物有毒;Al3+在低pH下溶解性很高,大多數土壤中當pH高於5.2時Al3+才不易溶解。[6]
鋁不是植物養分,並且因此不被植物主動吸收,而是通過滲透被動地進入植物根。鋁抑制根生長;側根和根尖變粗、根缺乏精細分枝;根尖可變成棕色。在根中,已經顯示鋁干擾許多生理過程,包括鈣和其他必需營養物的攝取和轉運,細胞分裂,細胞壁形成和酶活性[7]
在含有錳含量高的礦物的土壤中,錳的毒性在pH5.6以下會成為問題。錳如鋁,隨著pH下降變得越來越可溶解,並且在pH水平低於5.6時可以看到錳的毒性症狀出現。錳是葉綠素的組成物之一,因此植物將錳轉運到葉中。錳毒性的經典症狀是葉子皺縮呈現托起狀態。
[8] 由植物大量需要的營養物被稱為大量營養素,包括氮 (N)、磷 (P)、鉀 (K)、鈣 (Ca)、鎂 (Mg) 和硫 (S)。植物需要微量的元素被稱為微量營養素或是微量營養素物。微量營養物不是植物組織的主要成分,但是對於生長是必需的。它們包括鐵 (Fe)、錳 (Mn)、鋅 (Zn)、銅 (Cu)、鈷 (Co)、鉬 (Mo)、和硼 (B)。
大量營養素和微量營養素的可用性受土壤pH的影響。在輕度到中度鹼性的土壤中,鉬和大量營養素(除了磷外)的可用性增加,但是 P、Fe、Mn、Zn Cu、和 Co水平降低並且可能不利地影響植物生長。
在酸性土壤種,微量營養素(除鉬、硼外)的有效性會提高。氮通過固氮或肥料調節作為銨 (NH
4) 或硝酸鹽 (NO
3) 供應,溶解的氮在土壤pH為6.0至8.0時將具有最高濃度。
相對於磷元素而言,氮元素對pH較為不敏感。為了使磷能夠被植物所利用,土壤pH需要在6.0至7.5的範圍內。
如果pH低於6.0,磷開始與鐵 (Fe) 和鋁 (Al) 形成不溶性化合物,如果pH高於7.5,則開始與鈣 (Ca)形成不溶性化合物。 在5.5至6.5的pH範圍內可以避免大多數養分缺乏,條件是土壤礦物質和有機物質含有開始的必需營養素。
測定pH的方法包括:
The most common amendment to increase soil pH is lime (CaCO3 or MgCO3), usually in the form of finely ground agricultural lime. The amount of lime needed to change pH is determined by the mesh size of the lime (how finely it is ground)and the buffering capacity of the soil. A high mesh size (60–100) indicates a finely ground lime, that will react quickly with soil acidity. Buffering capacity of soils is a function of a soils cation exchange capacity, which is in turn determined by the clay content of the soil, the type of clay and the amount of organic matter present. Soils with high clay content, particularly shrink–swell clay, will have a higher buffering capacity than soils with little clay. Soils with high organic matter will also have a higher buffering capacity than those with low organic matter. Soils with high buffering capacity require a greater amount of lime to be added than a soil with a lower buffering capacity for the same incremental change in pH.
可用於增加土壤pH的其它修正包括木灰,工業 CaO (生石灰)和牡蠣殼。白木柴灰包括對於需要離子如 Na+ (鈉), K+ (鉀), Ca2+ (鈣),的過程重要的金屬鹽,其對於選擇的菌群可能是或可能不是好的,但降低土壤的酸性質量。
這些產品通過 CO32− 與 H+ 反應產生 CO2 和 H2O,從而提高土壤的pH值。矽酸鈣通過除去游離氫離子來中和土壤中的活性酸度,從而增加pH。由於其矽酸鹽陰離子捕獲 H+離子(提高pH), 它形成單矽酸 (H4SiO4),中性溶質。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.