由上下取整函數的定義,可見
等號若且唯若為整數,即
實際上,上取整與下取整函數作用於整數,效果等同恆等函數:
自變數加負號,相當於將上取整與下取整互換,外面再加負號,即:
且:
至於小數部分,自變數取相反數會使小數部分變成關於1的「補數」:
上取整、下取整、小數部分皆為冪等函數,即函數疊代兩次的結果等於自身:
而多個上取整與下取整依次疊代的效果,相當於最內層一個:
因為外層取整函數實際衹作用在整數上,不帶來變化。
若和為正整數,且,則
若為正整數,則
若為正數,則
代,上式推出:
更一般地,對正整數,有埃爾米特恆等式:[5]
對於正整數,以下兩式可將上下取整函數互相轉化:
對任意正整數和,有:
作為特例,當和互質時,上式簡化為
此等式可以幾何方式證明。又由於右式關於、對稱,可得
更一般地,對正整數,有
上式算是一種「互反律」(reciprocity law),與§ 二次互反律有關。
下取整函數出現於若干刻畫質數的公式之中。舉例,因為在整除時等於,否則為,所以正整數為質數若且唯若[11]
除表示質數的條件外,還可以寫出公式使其取值為質數。例如,記第個質數為,任選一個整數,然後定義實數為
則衹用取整、冪、四則運算可以寫出質數公式:
類似還有米爾斯常數,使
皆為質數。[13]
若不疊代三次方函數,改為疊代以為㡳的指數函數,亦有使
皆為質數。[13]
以質數計算函數表示小於或等於的質數個數。由威爾遜定理,可知
又或者,當時:[15]
本小節的公式未有任何實際用途。[16][17]
- 如果x為整數,則
- 否則