在數學 上,二項式係數 是二項式定理 中各項的係數 。一般而言,二項式係數由兩個非負整數
n
{\displaystyle n}
和
k
{\displaystyle k}
為參數決定,寫作
(
n
k
)
{\displaystyle {\tbinom {n}{k}}}
,定義為
(
1
+
x
)
n
{\displaystyle (1+x)^{n}}
的多項式展開式中,
x
k
{\displaystyle x^{k}}
項的係數 ,因此一定是非負整數。如果將二項式係數
(
n
0
)
,
(
n
1
)
,
…
,
(
n
n
)
{\displaystyle {\binom {n}{0}},{\binom {n}{1}},\dots ,{\binom {n}{n}}}
寫成一行,再依照
n
=
0
,
1
,
2
,
…
{\displaystyle n=0,1,2,\dots }
順序由上往下排列,則構成帕斯卡三角形 。
二項式係數可排列成帕斯卡三角形
二項式係數常見於各數學領域中,尤其是組合數學 。事實上,
(
n
k
)
{\displaystyle {\tbinom {n}{k}}}
可以被理解為從
n
{\displaystyle n}
個相異元素中取出
k
{\displaystyle k}
個元素的方法數,所以
(
n
k
)
{\displaystyle {\tbinom {n}{k}}}
大多讀作「
n
{\displaystyle n}
取
k
{\displaystyle k}
」。二項式係數
(
n
k
)
{\displaystyle {\tbinom {n}{k}}}
的定義可以推廣至
n
{\displaystyle n}
是複數 的情況,而且仍然被稱為二項式係數。
除展開二項式或點算組合數量之外,尚有多種方式計算
(
n
k
)
{\displaystyle {\tbinom {n}{k}}}
的值。
以下遞歸 公式可計算二項式係數:
(
n
k
)
=
(
n
−
1
k
−
1
)
+
(
n
−
1
k
)
∀
n
,
k
∈
N
{\displaystyle {\binom {n}{k}}={\binom {n-1}{k-1}}+{\binom {n-1}{k}}\quad \forall n,k\in \mathbb {N} }
其中特別指定:
(
n
0
)
=
1
∀
n
∈
N
∪
{
0
}
,
{\displaystyle {\binom {n}{0}}=1\quad \forall n\in \mathbb {N} \cup \{0\},}
(
0
k
)
=
0
∀
k
∈
N
.
{\displaystyle {\binom {0}{k}}=0\quad \forall k\in \mathbb {N} .}
此公式可由計算
(
1
+
x
)
n
−
1
(
1
+
x
)
{\displaystyle (1+x)^{n-1}(1+x)}
中的
x
k
{\displaystyle x^{k}}
項,或點算集合
{
1
,
2
,
⋯
,
n
}
{\displaystyle \left\{1,2,\cdots ,n\right\}}
的
k
{\displaystyle k}
個元素組合中包含
n
{\displaystyle n}
與不包含
n
{\displaystyle n}
的數量得出。
顯然,如果
k
>
n
{\displaystyle k>n}
,則
(
n
k
)
=
0
{\displaystyle {\tbinom {n}{k}}=0}
。而且對所有
n
{\displaystyle n}
,
(
n
n
)
=
1
{\displaystyle {\tbinom {n}{n}}=1}
,故此上述遞歸公式可於此等情況下中斷。遞歸公式可用作建構帕斯卡三角形 。
∑
r
=
0
n
(
n
r
)
=
2
n
{\displaystyle \sum _{r=0}^{n}{\binom {n}{r}}=2^{n}}
∑
r
=
0
k
(
n
+
r
−
1
r
)
=
(
n
+
k
k
)
{\displaystyle \sum _{r=0}^{k}{\binom {n+r-1}{r}}={\binom {n+k}{k}}}
∑
r
=
0
n
−
k
(
−
1
)
r
(
n
+
1
)
k
+
r
+
1
(
n
−
k
r
)
=
(
n
k
)
−
1
{\displaystyle \sum _{r=0}^{n-k}{\frac {(-1)^{r}(n+1)}{k+r+1}}{\binom {n-k}{r}}={\binom {n}{k}}^{-1}}
∑
r
=
0
n
(
d
n
d
r
)
=
1
d
∑
r
=
1
d
(
1
+
e
2
π
r
i
d
)
d
n
{\displaystyle \sum _{r=0}^{n}{\binom {dn}{dr}}={\frac {1}{d}}\sum _{r=1}^{d}(1+e^{\frac {2\pi ri}{d}})^{dn}}
[ 參 3]
∑
i
=
m
n
(
a
+
i
i
)
=
(
a
+
n
+
1
n
)
−
(
a
+
m
m
−
1
)
{\displaystyle \sum _{i=m}^{n}{\binom {a+i}{i}}={\binom {a+n+1}{n}}-{\binom {a+m}{m-1}}}
(
a
+
m
m
−
1
)
+
(
a
+
m
m
)
+
(
a
+
m
+
1
m
+
1
)
+
.
.
.
+
(
a
+
n
n
)
=
(
a
+
n
+
1
n
)
{\displaystyle {\binom {a+m}{m-1}}+{\binom {a+m}{m}}+{\binom {a+m+1}{m+1}}+...+{\binom {a+n}{n}}={\binom {a+n+1}{n}}}
F
n
=
∑
i
=
0
∞
(
n
−
i
i
)
{\displaystyle F_{n}=\sum _{i=0}^{\infty }{\binom {n-i}{i}}}
[ 參 4]
F
n
−
1
+
F
n
=
∑
i
=
0
∞
(
n
−
1
−
i
i
)
+
∑
i
=
0
∞
(
n
−
i
i
)
=
1
+
∑
i
=
1
∞
(
n
−
i
i
−
1
)
+
∑
i
=
1
∞
(
n
−
i
i
)
=
1
+
∑
i
=
1
∞
(
n
+
1
−
i
i
)
=
∑
i
=
0
∞
(
n
+
1
−
i
i
)
=
F
n
+
1
{\displaystyle F_{n-1}+F_{n}=\sum _{i=0}^{\infty }{\binom {n-1-i}{i}}+\sum _{i=0}^{\infty }{\binom {n-i}{i}}=1+\sum _{i=1}^{\infty }{\binom {n-i}{i-1}}+\sum _{i=1}^{\infty }{\binom {n-i}{i}}=1+\sum _{i=1}^{\infty }{\binom {n+1-i}{i}}=\sum _{i=0}^{\infty }{\binom {n+1-i}{i}}=F_{n+1}}
∑
i
=
m
n
(
i
a
)
=
(
n
+
1
a
+
1
)
−
(
m
a
+
1
)
{\displaystyle \sum _{i=m}^{n}{\binom {i}{a}}={\binom {n+1}{a+1}}-{\binom {m}{a+1}}}
(
m
a
+
1
)
+
(
m
a
)
+
(
m
+
1
a
)
.
.
.
+
(
n
a
)
=
(
n
+
1
a
+
1
)
{\displaystyle {\binom {m}{a+1}}+{\binom {m}{a}}+{\binom {m+1}{a}}...+{\binom {n}{a}}={\binom {n+1}{a+1}}}
∑
r
=
0
n
(
n
r
)
2
=
(
2
n
n
)
{\displaystyle \sum _{r=0}^{n}{\binom {n}{r}}^{2}={\binom {2n}{n}}}
∑
i
=
0
n
(
r
1
+
n
−
1
−
i
r
1
−
1
)
(
r
2
+
i
−
1
r
2
−
1
)
=
(
r
1
+
r
2
+
n
−
1
r
1
+
r
2
−
1
)
{\displaystyle \sum _{i=0}^{n}{\binom {r_{1}+n-1-i}{r_{1}-1}}{\binom {r_{2}+i-1}{r_{2}-1}}={\binom {r_{1}+r_{2}+n-1}{r_{1}+r_{2}-1}}}
[ 參 5]
(
1
−
x
)
−
r
1
(
1
−
x
)
−
r
2
=
(
1
−
x
)
−
r
1
−
r
2
{\displaystyle (1-x)^{-r_{1}}(1-x)^{-r_{2}}=(1-x)^{-r_{1}-r_{2}}}
(
1
−
x
)
−
r
1
(
1
−
x
)
−
r
2
=
(
∑
n
=
0
∞
(
r
1
+
n
−
1
r
1
−
1
)
x
n
)
(
∑
n
=
0
∞
(
r
2
+
n
−
1
r
2
−
1
)
x
n
)
=
∑
n
=
0
∞
(
∑
i
=
0
n
(
r
1
+
n
−
1
−
i
r
1
−
1
)
(
r
2
+
i
−
1
r
2
−
1
)
)
x
n
{\displaystyle (1-x)^{-r_{1}}(1-x)^{-r_{2}}=(\sum _{n=0}^{\infty }{\binom {r_{1}+n-1}{r_{1}-1}}x^{n})(\sum _{n=0}^{\infty }{\binom {r_{2}+n-1}{r_{2}-1}}x^{n})=\sum _{n=0}^{\infty }(\sum _{i=0}^{n}{\binom {r_{1}+n-1-i}{r_{1}-1}}{\binom {r_{2}+i-1}{r_{2}-1}})x^{n}}
(
1
−
x
)
−
r
1
−
r
2
=
∑
n
=
0
∞
(
r
1
+
r
2
+
n
−
1
r
1
+
r
2
−
1
)
x
n
{\displaystyle (1-x)^{-r_{1}-r_{2}}=\sum _{n=0}^{\infty }{\binom {r_{1}+r_{2}+n-1}{r_{1}+r_{2}-1}}x^{n}}
∑
i
=
0
k
(
n
i
)
(
m
k
−
i
)
=
(
n
+
m
k
)
{\displaystyle \sum _{i=0}^{k}{\binom {n}{i}}{\binom {m}{k-i}}={\binom {n+m}{k}}}
(
n
+
k
k
)
2
=
∑
j
=
0
k
(
k
j
)
2
(
n
+
2
k
−
j
2
k
)
{\displaystyle {\binom {n+k}{k}}^{2}=\sum _{j=0}^{k}{\binom {k}{j}}^{2}{\binom {n+2k-j}{2k}}}
見(Graham, Knuth & Patashnik 1994 ),其中就
k
<
0
{\displaystyle k<0}
定義了
(
n
k
)
=
0
{\displaystyle {\tbinom {n}{k}}=0}
,其他一般化形式包括考慮兩參數為實數或複數 時以伽瑪函數 為
k
<
0
{\displaystyle k<0}
時定義
(
n
k
)
{\displaystyle {\tbinom {n}{k}}}
,但此舉會令大部分二項式係數的恆等式失效,故未有被廣泛採用。然而,此方法替不等於零的參數下定義則可得出如Hilton, Holton and Pedersen, Mathematical reflections: in a room with many mirrors , Springer, 1997中那種好看的「帕斯卡風車」,但是卻會令帕斯卡法則 在原點失效。
此可視作泰勒定理 的離散形式,亦與牛頓多項式 有關,此式的交錯項之和可以Nörlund–Rice積分 表示。
伍啟期. 组合数列求和 . 佛山科學技術學院學報(自然科學版). 1996, (4) [2014-05-24 ] . (原始內容存檔 於2019-05-02).
Benjamin, Arthur T. ; Quinn, Jennifer (2003). Proofs that Really Count: The Art of Combinatorial Proof (頁面存檔備份 ,存於網際網路檔案館 ), Mathematical Association of America.
Bryant, Victor . Aspects of combinatorics . Cambridge University Press. 1993. ISBN 0521419743 .
Flum, Jörg; Grohe, Martin. Parameterized Complexity Theory . Springer. 2006 [2011-07-28 ] . ISBN 978-3-540-29952-3 . (原始內容存檔 於2007-11-18).
Fowler, David . The Binomial Coefficient Function . The American Mathematical Monthly (Mathematical Association of America). January 1996, 103 (1): 1–17. JSTOR 2975209 . doi:10.2307/2975209 .
Graham, Ronald L. ; Knuth, Donald E. ; Patashnik, Oren . Concrete Mathematics Second. Addison-Wesley. 1994: 153 –256. ISBN 0-201-55802-5 .
Higham, Nicholas J. Handbook of writing for the mathematical sciences . SIAM . 1998: 25 . ISBN 0898714206 .
Knuth, Donald E. The Art of Computer Programming, Volume 1: Fundamental Algorithms Third. Addison-Wesley. 1997: 52–74. ISBN 0-201-89683-4 .
Singmaster, David . Notes on binomial coefficients. III. Any integer divides almost all binomial coefficients. J. London Math. Soc. (2). 1974, 8 (3): 555–560. doi:10.1112/jlms/s2-8.3.555 .
Shilov, G. E. Linear algebra . Dover Publications. 1977. ISBN 9780486635187 .