中線或重線是三角形中從某邊的中點連向對角的頂點的線段。三角形的三條中線總是相交於同一點,這個點稱為三角形的重心。 圖中 △ {\displaystyle \triangle } ABC和中線AD 性質1 任意三角形的三條中線把三角形分成面積相等的六個部分。中線都把三角形分成面積相等的兩個部分。除此之外,任何其他通過中點的直線都不把三角形分成面積相等的兩個部分。 證明 考慮三角形ABC。設D為 A B ¯ {\displaystyle {\overline {AB}}} 的中點,E為 B C ¯ {\displaystyle {\overline {BC}}} 的中點,F為 A C ¯ {\displaystyle {\overline {AC}}} 的中點,O為重心。 根據定義, A D = D B , A F = F C , B E = E C {\displaystyle AD=DB,AF=FC,BE=EC} ,因此 [ A D O ] = [ B D O ] , [ A F O ] = [ C F O ] , [ B E O ] = [ C E O ] , [ A B E ] = [ A C E ] {\displaystyle [ADO]=[BDO],[AFO]=[CFO],[BEO]=[CEO],[ABE]=[ACE]} ,其中 [ A B C ] {\displaystyle [ABC]} 表示三角形ABC的面積。 我們有: [ A B O ] = [ A B E ] − [ B E O ] {\displaystyle [ABO]=[ABE]-[BEO]} [ A C O ] = [ A C E ] − [ C E O ] {\displaystyle [ACO]=[ACE]-[CEO]} 因此, [ A B O ] = [ A C O ] {\displaystyle [ABO]=[ACO]} 且 [ A D O ] = [ D B O ] , [ A D O ] = 1 2 [ A B O ] {\displaystyle [ADO]=[DBO],[ADO]={\frac {1}{2}}[ABO]} 。 由於 [ A F O ] = [ F C O ] , [ A F O ] = 1 2 [ A C O ] = 1 2 [ A B O ] = [ A D O ] {\displaystyle [AFO]=[FCO],[AFO]={\frac {1}{2}}[ACO]={\frac {1}{2}}[ABO]=[ADO]} ,所以 [ A F O ] = [ F C O ] = [ D B O ] = [ A D O ] {\displaystyle [AFO]=[FCO]=[DBO]=[ADO]} 。 同理,也可以證明 [ A F O ] = [ F C O ] = [ D B O ] = [ A D O ] = [ B E O ] = [ C E O ] {\displaystyle [AFO]=[FCO]=[DBO]=[ADO]=[BEO]=[CEO]} 。 性質2 在 △ {\displaystyle \triangle } ABC中,連接角A的中線記為 m a {\displaystyle m_{a}} ,連接角B的中線記為 m b {\displaystyle m_{b}} ,連接角C的中線記為 m c {\displaystyle m_{c}} ,它們長度的公式為: m a = 1 2 2 ( b 2 + c 2 ) − a 2 {\displaystyle m_{a}={\frac {1}{2}}{\sqrt {2(b^{2}+c^{2})-a^{2}}}} m b = 1 2 2 ( c 2 + a 2 ) − b 2 {\displaystyle m_{b}={\frac {1}{2}}{\sqrt {2(c^{2}+a^{2})-b^{2}}}} m c = 1 2 2 ( a 2 + b 2 ) − c 2 {\displaystyle m_{c}={\frac {1}{2}}{\sqrt {2(a^{2}+b^{2})-c^{2}}}} 證明 在 △ {\displaystyle \triangle } ABD中, A D = m a {\displaystyle AD=m_{a}} ( m a ) 2 = ( A B ) 2 + ( B D ) 2 − 2 ( A B ) ( B D ) cos ∠ A B D {\displaystyle (m_{a})^{2}=(AB)^{2}+(BD)^{2}-2(AB)(BD)\cos \angle ABD} (餘弦定理) 以a,b,c表示 cos ∠ A B D {\displaystyle \cos \angle ABD} i . e . cos ∠ A B D = c 2 + a 2 − b 2 2 c a {\displaystyle i.e.\ \cos \angle ABD={\frac {c^{2}+a^{2}-b^{2}}{2ca}}} & B D = a 2 {\displaystyle BD={\frac {a}{2}}} 把以上兩等式代入原式, i . e . ( m a ) 2 = ( c ) 2 + ( a 2 ) 2 − 2 ( c ) ( a 2 ) c 2 + a 2 − b 2 2 c a {\displaystyle i.e.\ (m_{a})^{2}=(c)^{2}+({\frac {a}{2}})^{2}-2(c)({\frac {a}{2}}){\frac {c^{2}+a^{2}-b^{2}}{2ca}}} = ( c ) 2 + ( a 2 4 ) − ( c 2 + a 2 − b 2 2 ) {\displaystyle =(c)^{2}+({\frac {a^{2}}{4}})-({\frac {c^{2}+a^{2}-b^{2}}{2}})} = 4 c 2 + a 2 − 2 c 2 − 2 a 2 + 2 b 2 4 {\displaystyle ={\frac {4c^{2}+a^{2}-2c^{2}-2a^{2}+2b^{2}}{4}}} = 2 b 2 + 2 c 2 − a 2 4 {\displaystyle ={\frac {2b^{2}+2c^{2}-a^{2}}{4}}} ∴ m a = 1 2 2 ( b 2 + c 2 ) − a 2 {\displaystyle m_{a}={\frac {1}{2}}{\sqrt {2(b^{2}+c^{2})-a^{2}}}} 同理,可證得其他二式 Q.E.D. 參見 中線定理 角平分線長公式 Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.