連續q哈恩多項式 →Q梅西納-帕拉澤克多項式
p
n
(
c
o
s
(
θ
+
ϕ
)
;
a
,
0
,
0
,
a
;
q
)
(
q
;
q
)
n
=
P
n
(
c
o
s
(
θ
+
ϕ
)
;
a
|
q
)
{\displaystyle {\frac {p_{n}(cos(\theta +\phi );a,0,0,a;q)}{(q;q)_{n}}}=P_{n}(cos(\theta +\phi );a|q)}
Q梅西納-帕拉澤克多項式 →連續q超球面多項式
P
n
(
c
o
s
ϕ
;
β
|
q
)
=
C
n
(
c
o
s
ϕ
)
;
β
|
q
)
{\displaystyle P_{n}(cos\phi ;\beta |q)=C_{n}(cos\phi );\beta |q)}
Q梅西納-帕拉澤克多項式 →連續q拉蓋爾多項式
P
n
(
c
o
s
(
θ
+
ϕ
)
;
q
α
/
2
+
1
/
2
|
q
)
=
{\displaystyle P_{n}(cos(\theta +\phi );q^{\alpha /2+1/2}|q)=}
q
(
−
α
/
2
−
1
/
4
)
∗
n
∗
P
n
(
α
)
(
c
o
s
θ
|
q
)
{\displaystyle q^{(-\alpha /2-1/4)*n}*P_{n}^{(}\alpha )(cos\theta |q)}
QMEIXNER-POLLACZEK ABS COMPLEX 3D MAPLE PLOT
QMEIXNER-POLLACZEK IM COMPLEX 3D MAPLE PLOT
QMEIXNER-POLLACZEK RE COMPLEX 3D MAPLE PLOT
QMEIXNER-POLLACZEK ABS DENSITY MAPLE PLOT
QMEIXNER-POLLACZEK IM DENSITY MAPLE PLOT
QMEIXNER-POLLACZEK RE DENSITY MAPLE PLOT
Gasper, George; Rahman, Mizan, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications 96 2nd, Cambridge University Press , 2004, ISBN 978-0-521-83357-8 , MR 2128719 , doi:10.2277/0521833574
Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F., Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag , 2010, ISBN 978-3-642-05013-8 , MR 2656096 , doi:10.1007/978-3-642-05014-5
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F., http://dlmf.nist.gov/18 , Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (編), NIST Handbook of Mathematical Functions , Cambridge University Press, 2010, ISBN 978-0521192255 , MR 2723248
Roelof Koekoek, Hypergeometric Orthogonal Polynomials and its q-Analoques, p460,Springer