史咯米爾奇函數(Schlömilch function)是德國數學家史咯米爾奇(英語:Oscar_Schlömilch)在1859年首先研究的函數,定義如下:[1] 沒有或很少條目連入本條目。 (2015年10月28日) Schlömilch function Maple animiation S ( v , z ) = ∫ 0 ∞ ( 1 + t ) − v e − z t d t = z v − 1 e z ∫ z ∞ e − u / u v d u {\displaystyle S(v,z)=\int _{0}^{\infty }(1+t)^{-v}e^{-zt}dt=z^{v-1}e^{z}\int _{z}^{\infty }e^{-u}/u^{v}du} S ( v , z ) = Γ ( − 1 + v ) ∗ ( − 1 + v ) ∗ ( − v + z + v ∗ z ( − 1 + v ) ∗ e x p ( z ) ∗ Γ ( − v − 1 , z ) ∗ z 2 + v 2 ∗ z ( − 1 + v ) ∗ e x p ( z ) ∗ Γ ( − v − 1 , z ) ∗ z 2 ) Γ ( v ) ∗ z 2 {\displaystyle S(v,z)={\frac {\Gamma (-1+v)*(-1+v)*(-v+z+v*z^{(}-1+v)*exp(z)*\Gamma (-v-1,z)*z^{2}+v^{2}*z^{(}-1+v)*exp(z)*\Gamma (-v-1,z)*z^{2})}{\Gamma (v)*z^{2}}}} S ( v , z ) = ( Γ ( − 1 + s ) ∗ ( − 1 + s ) ∗ ( − s + v ) v 2 + ( − 1 + s ) ∗ v ( − 1 + s ) ∗ e x p ( v ) ∗ π s i n ( π ∗ s ) ∗ ( − s + 1 ) + ( − 1 + s ) ∗ ( 1 + s ) ∗ s ∗ v ( − 1 + s ) ∗ e x p ( v ) ∗ W h i t t a k e r W ( − 1 − ( 1 / 2 ) ∗ s , − ( 1 / 2 ) ∗ s − 1 / 2 , v ) ∗ Γ ( − 1 + s ) v ( 1 + ( 1 / 2 ) ∗ s ) ∗ e x p ( ( 1 / 2 ) ∗ v ) + P i ∗ v ( − 1 + s ) ∗ e x p ( v ) ∗ c s c ( P i ∗ s ) ) {\displaystyle S(v,z)=({\frac {\Gamma (-1+s)*(-1+s)*(-s+v)}{v^{2}}}+{\frac {(-1+s)*v^{(}-1+s)*exp(v)*\pi }{sin(\pi *s)*(-s+1)}}+{\frac {(-1+s)*(1+s)*s*v^{(}-1+s)*exp(v)*WhittakerW(-1-(1/2)*s,-(1/2)*s-1/2,v)*\Gamma (-1+s)}{v^{(}1+(1/2)*s)*exp((1/2)*v)}}+Pi*v^{(}-1+s)*exp(v)*csc(Pi*s))} S ( 0.5 , z ) ≈ ( P i ) / ( z ) − 2 + ( π ) ∗ ( z ) − ( 4 / 3 ) ∗ z + ( 1 / 2 ) ∗ z ( 3 / 2 ) ∗ ( π ) − ( 8 / 15 ) ∗ z 2 + ( 1 / 6 ) ∗ z ( 5 / 2 ) ∗ ( π ) − ( 16 / 105 ) ∗ z 3 + ( 1 / 24 ) ∗ z ( 7 / 2 ) ∗ ( π ) + O ( z 4 ) {\displaystyle S(0.5,z)\approx {\sqrt {(}}Pi)/{\sqrt {(}}z)-2+{\sqrt {(}}\pi )*{\sqrt {(}}z)-(4/3)*z+(1/2)*z^{(}3/2)*{\sqrt {(}}\pi )-(8/15)*z^{2}+(1/6)*z^{(}5/2)*{\sqrt {(}}\pi )-(16/105)*z^{3}+(1/24)*z^{(}7/2)*{\sqrt {(}}\pi )+O(z^{4})} S ( 0.2 , z ) ≈ Γ ( 4 / 5 ) / z ( 4 / 5 ) + z ( 1 / 5 ) ∗ Γ ( 4 / 5 ) + ( 1 / 2 ) ∗ z ( 6 / 5 ) ∗ Γ ( 4 / 5 ) + ( 1 / 6 ) ∗ z ( 11 / 5 ) ∗ Γ ( 4 / 5 ) + ( 1 / 24 ) ∗ z ( 16 / 5 ) ∗ Γ ( 4 / 5 ) − 5 / 4 − ( 25 / 36 ) ∗ z − ( 125 / 504 ) ∗ z 2 − ( 625 / 9576 ) ∗ z 3 + O ( z 4 ) {\displaystyle S(0.2,z)\approx {\Gamma (4/5)/z^{(}4/5)+z^{(}1/5)*\Gamma (4/5)+(1/2)*z^{(}6/5)*\Gamma (4/5)+(1/6)*z^{(}11/5)*\Gamma (4/5)+(1/24)*z^{(}16/5)*\Gamma (4/5)-5/4-(25/36)*z-(125/504)*z^{2}-(625/9576)*z^{3}+O(z^{4})}} [1]Schlömilch,Zeitschrift fur Math. und Physik, IV, 1859, p390 Whittaker and Watson, A Course of Modern Analysis, p352 Schlomilch function (頁面存檔備份,存於網際網路檔案館)Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.