Loading AI tools
来自维基百科,自由的百科全书
格陵兰冰原是覆盖着格陵兰近80%,约171万平方公里的大片冰原。这是全球第二大的冰原,仅次于南极冰原。格陵兰冰原的南北方向长2400公里,最阔达1100公里,位于更北边的北纬77°。冰的平均海拔高2135米。[1] 冰一般厚于2公里,最厚点多于3公里。这并非格陵兰唯一的冰块,亦有独立的冰川及冰盖,覆盖周边的7.6-10万平方公里。一些科学家相信全球暖化会将这冰原推向临界点,并于几百年内完全溶解。若整个冰原完全溶解,海平面就会上升7.2米。[2] 大部分沿海城市都会被淹没,细小的岛屿国家(如马尔代夫)从此消失。
格陵兰冰原的冰已有11万年的历史。[3] 但是,一般相信格陵兰冰原是于上新世晚期或更新世早期融合冰川及冰盖而形成的。自上新世晚期就没有再扩展,但在第一次大陆冰川作用就发展得非常快。
格陵兰冰原巨大的冰块将格陵兰的中央部分压下,接近到海平面的水平。周围有山包围冰原,限制了冰原的四围。若冰都消失了,格陵兰最有可能会变成群岛,直至地壳均衡将地表重新推到海平面以上。冰原的最高海拔是位于南北两面的崤。南崤高达海拔3000米,位于北纬63°–65°;北崤高达海拔3290米,位于北纬72°。两个崤顶偏向于东方。冰原的冰并未到达海洋,所以没有大型的冰架出现。大型的注出冰川流经山谷及格陵兰周边冲擦海洋,造成北大西洋的大量冰山。注出冰川中最著名的就是雅各布港冰河(Jakobshavn Isbræ),每日流动20-22米。
在冰原上,温度比格陵兰的其他地方要低。纪录最低的全年平均气温为-31℃,是在北崤的中北部出现。南崤顶的气温则为-20℃。
格陵兰冰原的年代已达11万年之久,冰内保存了以往气候的资料。在过去数十年,科学家钻探达4公里深的冰核,从中寻找以往的气候指标,如气温、海洋体积、雨量、化学及气体成分、火山爆发、太阳活动、海表生产力、沙漠范围及山火的资料。冰核下储存的气候指标比其他天然的纪录,如树轮及沉积层,来得要多。
格陵兰冰原位处于北极,特别容易受到全球暖化的影响。北极气候现已急速变得温暖,估计萎缩得更快。[4] 格陵兰冰原近年出现大幅溶解的情况,由1979年至2002年就上升了16%,令海平面上升及可能影响洋流方向。[4] 于1993年至2005年,在黑尔黑姆冰川(Helheim Glacier)及格陵兰西北部的冰川地震次数急遽上升。[5] 从冰原的质量估计,2006年的溶解率为每年239立方公里。另一项研究亦指2003年至2008年间,平均每年溶解195立方公里。[6] 根据冰云与地面高度卫星(ICESat)及先进星载热发射和反射辐射仪(ASTER)的数据,冰原所失去的冰约有75%成为了海岸的细小冰川。[7]
若格陵兰冰原的285万平方公里的冰完全溶掉,全球的海平面会上升7.2米。[2] 全球暖化问题可能会将格陵兰冰原的冰低于临界点,引发长期溶解问题。气候模式估计单在格陵兰于这个世纪内就会上升3℃,在下一千年估计海平面就会因此上升1米。[2]冰原模式进而估计这会引发冰原的长期溶解,直至整个冰原完全溶掉。[4] 这样的海平面上升差不多将全球所有主要城市都沉没在水中。一些科学家警告这种估算过分乐观,因为其假设是线性增长,没有考虑不规则的增长。詹姆斯·汉森指多重的正回授会导致冰原发生非线性的分解,比所估计的来得要快。[8]
近年格陵兰冰原的熔体区不断扩展,而融水经冰原的裂缝向下渗时,更令溶化的速度增加。在一些地区,冰还可以从岩床滑动,加快进入海洋。海洋的淡水成分增加,洋流及区域性的气候将会受到影响。[4]
格陵兰冰原注出冰川速度的改变可以有两个理论解释。第一个是有关融水的加剧效果。额外的冰表面溶化造成融水,融水经冰河壶穴滴漏入冰川基部,减低了基部的摩擦力。这个理论正正就是瑟梅哥·库雅雷戈冰川(Sermeq Kujalleq)于1998年至1999年间高达20%的季节性加速。[9] 不过,就巨型冰川流动的研究显示,这个机制只能提供短期的速度,对注出冰川的全年流动影响力甚少。[10] 另一个理论是指于冰裂面的不平衡力引起的非线性反应。变薄的冰川较具浮力,摩擦力因而减少及速度增加。冰裂面藉横向扩张来推动上层冰川。[11][12] 大型注出冰川的基部经常都会有水来帮助润滑。这些水一般是来自基部,而非表面溶解。若融水是加速的关键,冰川的速度必须也像融水般是季节性的;若不平衡力是关键,加速度必须没有季节性,且专注于冰裂面。格陵兰东部的黑尔黑姆冰川于1970年代至2000年间都有稳定的终点。于2001年至2005年,黑尔黑姆冰川后退了7公里,并由每天20米加速至30米,终点区域向上变薄达130米。同于东部的康格尔隆萨克冰川(Kangerdlugssuaq Glacier)于1960年至2002年间都有稳定的终点,其速度由1990年代的每天13米,增加至2004年至2005年的每天36米,于下游变薄达100米。瑟梅哥·库雅雷戈冰川的加速度由冰裂面开始,于1997年散布到上层冰川的20公里,而到了2003年就到了内陆的55公里。[13] 以上每一个主要的注出冰川加速度都超过50%,远远高出融水的影响。加速也不只限于夏天,就算没有融水也能维持加速度。就格陵兰东南部32个注出冰川的研究,发现流入海洋冰川的加速度特别明显。[7] 另外,这些冰川的冰原变薄得也较为明显。[14] 故此,唯一能解释加速度的是一连串的事件:流入海洋冰川的终点区额外地变薄,未有磨蚀冰川舌,从而容许了加速、消退及进一步的变薄。[7][14][15][16] 融水引发的加速度并没有明显的影响。
政府间气候变化专门委员会(IPCC)估计中央部分的积雪每年达5200±260亿吨,溢流及底部溶冰分别每年达2970±320吨及320±30吨,每年制造冰山达2350±330吨。[2] 综合来说每年就减少了440±530吨,显示冰原现正溶解。根据1996年至2005年的数据,冰原变薄的速度更快。于1996年,格陵兰每年就减少96立方公里的冰原;2005年,减少的冰原就上升至每年约220立方公里;[17] 到了2006年,估计就进一步上升至每年的239立方公里。[18] 以此失冰率计算,格陵兰冰原只有1.19万年来溶化。[2] 但是于2007年,格陵兰冰原的失冰率就上到历史新高的592立方公里,加上雪降偏低,一年就反常的减少了65立方公里。[19] 若冰山崩裂按正常发生,单于2007年格陵兰就失去了2940吨的冰原。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.