米安-邱拉数列(Mian-Chowla sequence)是以递归方式定义的整数数列,其首项为

而对于是对于所有不大于,以下的二项和

均不重复的最小整数。

性质

第一项为,其二项和只有一个1 + 1 = 2,数列的下一项是,其二项和有2, 3, 4,都不重复。第三项不能是3,因为若是3,就会有重复的二项和1 + 3 = 2 + 2 = 4,可得到,二项和为2, 3, 4, 5, 6, 8。米安-邱拉数列的前几项是

1, 2, 4, 8, 13, 21, 31, 45, 66, 81, 97, 123, 148, 182, 204, 252, 290, 361, 401, 475, ... (OEIS数列A005282).

类似数列

若定义,所得的数列相近,不过每一项都比米安-邱拉数列要少1(0, 1, 3, 7, 12, 20, 30, 44, 65, 80, 96, ... A025582)。

历史

此数列是由阿布杜尔·马基德·米安萨尔瓦达曼·邱拉英语Sarvadaman Chowla所发现。

参考资料

  • S. R. Finch, Mathematical Constants, Cambridge (2003): Section 2.20.2
  • R. K. Guy Unsolved Problems in Number Theory, New York: Springer (2003)

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.