Loading AI tools
定理 来自维基百科,自由的百科全书
物理学上,庞加莱复现定理[1](英语:Poincaré recurrence theorem,又译为庞加莱回复定理或庞加莱回归定理[2][3][4])断言,对于某类系统而言,只要经过充分长但有限的时间,一定会到达某个与初始态任意接近的状态(若该系统具连续的状态),或者一定返回初始态本身(若该系统离散)。
庞加莱复现时间是复现前经过的时长。对于不同的初始态和不同的要求接近的程度,此时间亦不同。定理仅适用于满足某些条件的孤立力学系统,例如该系统所有粒子都必须约束在某个有限体积的范围内。定理可以放在遍历理论、动态系统,或者统计力学的背景中讨论。适用此定理的系统称为守恒系统(与耗散系统相对)。
定理得名自亨利·庞加莱,其于1890年讨论过此定理[5][6]。1919年,康斯坦丁·卡拉西奥多里利用测度论证明了此定理。[7][8]
对于任何一个由常微分方程式定义的动态系统,都有相应的流映射 f t,而对每个固定的 t(可当成时间), f t 皆是由该系统的相空间射去相空间本身的映射。若相空间中,每个可以计算体积(称为相体积)的子集,都在流中保持体积,则称该系统保体积。例如,根据刘维尔定理,所有哈密顿系统皆保体积。
有了上述的背景之后,可以将定理叙述如下:若流保体积,且其所有轨道皆有界,则对于相空间中每个开集,都有轨道与之相交无穷多次。[9]
定性理解,证明的关键在于两个前提:[10]
取相空间中任意一块体积有限的起始区域,其按照系统的动态而移动,“扫过”相空间的一部分点。由于该区域的体积在过程中保持不变,其扫过的总体积(称为相管,phase tube)理应随时间线性增加(至少在起始不久后如此)。然而,由于可达的相空间总体积有限,相管的体积会达到某个饱和值,而不能一直增加,否则终会大于可达的总相体积。这正说明,相管必与自身相交。倘若要与自身相交,则必须先经过起始的区域。所以,起始体积中至少有体积非零的一部分复现(recur)。
此时,考虑起始区域中永不返回的部分。按上段的论证,若该部分的体积非零,则其必有体积非零的部分复现,但若永不返回的部分中,有一部分复现,则后者亦必返回到原始区域内,造成矛盾。所以,起始区域中永不返回的部分体积只能为零,即与起始区域相比是极小。
注意定理(并其证明)并不保证复现的若干性质:
设
为总测度有限的测度空间,并设
对任意可测子集 中满足:存在正整数 ,使得对任意 都有 的点 的集合的测度为零。
换言之, 中几乎所有点皆会返回到 且会返回无穷多次,即
证明见于所引参考资料。[11]
以下为定理的拓扑版本:
若 为第二可数的豪斯多夫空间,而 包含其博雷尔σ-代数,则 的复现点集的测度等于 的全测度,即几乎所有点皆复现。
证明同样见于所引参考资料。[12]
更一般地,定理适用于守恒系统,而不仅是保测动态系统。
对于非时变的量子力学系统,若其能量特征态离散,则有类似的定理成立。对于任意的 和 皆存在时间 T 大于 使得 其中 表示系统于时间 t 的态向量。[13][14][15]
证明的关键如下。系统的状态按下式随时间变化:
其中 为能量特征值(此处使用自然单位,故约化普朗克常数 ),而 为相应的能量特征态。时间 和时间 的态向量的距离平方为
可于某项 n = N 截尾,而 N 不取决于 T, 因为
而又有 收敛(此为始态的范数平方),故上式中 取很大时,能使上式的值任意小。
而有限和
按以下的构造,也能藉着拣选特定的时刻 T, 而使之任意小。取任意的 然后取 T, 使得对于 都总存在整数 满足
对此 T, 有
于是,
亦即态向量 会回到与始态 任意接近之处。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.