自行是恒星相对于太阳系的质量中心,随着时间变化的推移所显示出在位置在角度上的改变[1],它的测量是以角秒/年为单位(3600角秒等同于角度的1度[2]。反之,径向速度是在视线方向上天体接近或远离的速度,随着时间推展的变化率,通常是测量辐射中的多普勒频移。自行不是恒星的本质(即恒星的内禀性质),因为它包含了太阳系本身运动的元素在内[3]。由于光速是有限的,遥远恒星的真实速度很难观测得到,观测自行反映的是恒星当时辐射光的运动。

Thumb
自行和天体组成速度之间的关系。发射体,该天体与太阳的距离是d,角度的改变率是μ(径/秒),也就是μ = vt / d,而vt = 在太阳视线方向上的横向速度。 (在图说中扫掠过的角度μ和横向速度vt都是单位时间。)

自行的测量需要排除下列会影响观测天体位置座标值的因素,这些因素主要有:

介绍

在几个世纪的过程中,星星彼此之间似乎都保持着固定的相对位置,因此在有历史的时间里,它们形成的星座也是相同的。例如,大熊座,看起来仍然与数百年前一样。可是,精确的长时间观察显示星座的形状有所改变,每颗恒星都有自己的运动

这种运动是由恒星相对于太阳的真实运动,和太阳系穿越空间造成的。太阳以大约220公里/秒的速度,在与中心距离大约是8,000±650秒差距的一个近似圆的轨道(称为太阳圈)绕着银河系的中心运动[4][5],这可以视为银河系本身在此半径上的旋转速度[6][7]

对自行的测量需要两个量:自行角位置角)和自行本身。第一个量指示出在天球上运动的方向(以天球北方为0度),90度是朝向东方,余依此类推,第二个量表示运动的程度,单位是毫角秒/年(mas)。

Thumb
自行在天球上的元件:位置角和自行。天球北极点是CNP春分点V,恒星在天球上的路径以箭头指示。自行的向量是μα = 赤经δ = 赤纬θ = 位置角

自行也可以表示为每年在赤经μα)与赤纬μδ)上改变的角度。在天球上,位置是以赤经和赤纬设定的。座标的δ对应于纬度,座标的α对应于从春分点V,太阳约在每年3月21日穿越赤道的位置,量度得到的经度[8]

自行的分量元件如下所显示的,假设某个天体的位置在一年的时间从座标(α, δ)移动到(α1, δ1),并以弧秒为单位测量角度。则每年的角度变化是[9]

自行的大小μ是它的元件(分量)向量和[10][11]

此处,δ是赤纬。在算式中的cos δ是因为球体表面至轴的半径事实上是随cos δ而变,例如在极点为0。因此,平行于赤道的速度分量在相当于α的角度,变化是越往北的位置越小。μα 的变化,必须乘上cos δ才能成为自行的分量,他有时称为“赤经自行”,而μδ称为“赤纬自行”[12]

位置角θ与这些元件相关[13][14]


Thumb
从1985年至2005年的巴纳德星,显示每5年的位置变化

巴纳德星是目前所有已知恒星中自行最大的,每年以10.3角秒的速度移动。自行越大,通常暗示一颗星相对离太阳系越近。这的确是巴纳德星的情况,它距离我们只有大约6光年,是除南门二系统(半人马座α三合星)外,距太阳系第二近的恒星。但由于属于红矮星,亮度只有9.54星等的大小,光度微弱,没有大口径望远镜或者高倍双筒望远镜无法观察。

在1992年,天鹰座ρ成为第一颗因为自行而移入另一个星座,导致原有名称无效的恒星,它现在是海豚座的恒星[15]。下一颗这样的恒星将会是雕具座γ,它在2400年将成为天鸽座的恒星[16]

在1光年的距离上,每年1角秒的自行相当于每秒1.45公里的横向速度。对巴纳德星而言,这相当于每秒90公里;加上每秒111公里的径向速度(垂直于横向速度),可以得到它实际上的运动速度相当于每秒142公里。真实的或绝对的运动速度比自行更难测量,因为真正的横向速度涉及测量自行的时间和距离;也就是说,真正的速度测量取决于距离的测量,而一般很难测量出距离。目前,在邻近的恒星中速度最快的(相对于太阳)是沃夫424,它的速度是每秒555公里(或是光速的1/540)。

在天文学的功用

有高自行的恒星多半是邻近的恒星,而大多数的恒星都远得足以使他们的自行变得很小,数量级为每年只有数毫角秒。高自行的恒星可以经由相隔数年的巡天摄影获得样品的结构。帕洛玛巡天是这种图像的来源之一。在过去,搜寻高自行的天体都是使用眼睛透过闪烁比对器比对影像,但使用现代化的技术更有成效,像是图像差分,自动搜索数码化的影像资料。由于选择偏误的结果,高自行的样品是易于理解和高质量的,它或许可以用来建立恒星族群的普查 - 例如,在每个真实的光度星等有多少的恒星。这一类的研究可以显示在本地群的恒星族群,主要是本质暗淡、不显眼的恒星,像是红矮星

在遥远的恒星系统中,像是球状星团,量测大量恒星自行的样本,经由莱昂纳德·梅里特质量估计可以用来计算集团的总质量。与恒星的径向速度结合在一起,自行可以用来计算集团的距离。

利用恒星自行已经推算出银河中心存在着超大质量黑洞[17]。这个黑洞被怀疑就是人马座A*,质量为2.6×106 M,此处的M太阳质量

Röser曾仔细的研究本星系群星系的自行[18]。在2005年,第一次测量出三角座星系M33的自行。M33是本星系群第三大的星系,也是唯一的普通螺旋星系,与银河系的距离约为860± 28千秒差距[19]。虽然知道距离大约786千秒差距的仙女座大星系也在运动,并且预测在50至100亿间会发生仙女-银河碰撞,但是它的自行仍然不清楚,而估计横向速度的上限大约是100公里/秒[7][20][21]。在1999年,猎犬II星系群中的星系NGC 4258(M106)的自行被用来测量这个星系群的精确距离[22]。测量星系的径向运动,直接可以知道该星系是向我们接近还是远离,并且假设集团中只有自行的物体也适用同样的运动,由观测到的自行测量到这个星系群的距离为7.2±0.5 Mpc[23]

历史

早期的天文学家(公元400年的马克罗比乌斯 Macrobius))曾经怀疑恒星有自行。但是直到1718年爱德蒙·哈雷注意到天狼星大角星毕宿五的位置与约1850年前的古希腊天文学家伊巴谷所描述的位置有半度以上的偏差,才得到证实[24]

“自行”这个名词源自法文的propre,意思是“归属于”,所以在天文学中没有“不当运动”这样的名词[1]

在2005年发表的研究报告,现代天文学家已测出第一个外星系(三角座星系)的自行运动数据。

已知自行最大的恒星

下表是在《依巴谷星表》内已知自行最大的一些恒星,[25]但不包含像蒂加登星那些虽在星表中,但光度太暗淡的恒星。

More information #, 恒星 ...
高自行的恒星[26]
# 恒星 自行 径向
速度
(公里/秒)
视差
(mas)
μα·cos δ
(mas/yr)
μδ
(mas/yr)
1 巴纳德星 -798.71 10337.77 -106.8 549.30
2 卡普坦星 6500.34 -5723.17 +245.5 255.12
3 葛鲁姆布里吉1830 4003.69 -5814.64 -98.0 109.22
4 拉卡伊9352 6766.63 1327.99 +9.7 303.89
5 格利泽1(CD -37 15492) 5633.95 -2336.69 +23.6 229.32
6 HIP 67593 2282.15 5369.33 76.20
7 天鹅座61 A & B 4133.05 3201.78 -64.3 287.18
8 拉兰德21185 -580.46 -4769.95 -85.0 392.52
9 印第安座ε 3961.41 -2538.33 -40.4 275.79
Close

软件

有许多的软件产品,它们可以让人们查看不同时间尺度下的恒星自行。下面是两个免费的:

  • Moovastar –自由软件,视窗板,非常基础的。你可以选择天空中的一个区域,设定极限星等和时间的序列(时间间隔、时间步数、数量步数)。这个程式将模拟恒星的运动,并有清楚的功能说明。
  • HippLiner页面存档备份,存于互联网档案馆) -自由软件,视窗板,有些复杂,有一些漂亮的显示。仍在发展,须要有更多的导航和功能配置。

相关条目

参考文献

外部链接

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.