chān(英语:doping)是半导体制造工艺中,为纯的本质半导体引入杂质,使之电气属性被改变的过程。此杂质称为掺杂剂(dopant)或掺杂物,而引入的杂质与要制造的半导体种类有关。轻度和中度掺杂的半导体被称作是杂质半导体,而更重度掺杂的半导体则需考虑费米统计律带来的影响,这种情况被称为简并半导体

载流子浓度

掺杂物浓度对于半导体最直接的影响在于其载流子浓度。在热平衡的状态下,一个未经掺杂的本征半导体,电子与空穴的浓度相等,如下列公式所示:

对于非本征半导体在热平衡的状态下,这个关系变为(对轻掺杂而言):

其中n0是半导体内的电子浓度、p0则是半导体的空穴浓度,则是本征半导体的载流子浓度。会随着材料或温度的不同而改变。对于室温下的而言,大约是1.5×1010 cm-3

通常掺杂浓度越高,半导体的导电性就会变得越好,原因是能进入导带的电子数量会随着掺杂浓度提高而增加。掺杂浓度非常高的半导体会因为导电性接近金属而被广泛应用在今日的集成电路制程来取代部分金属。高掺杂浓度通常会在或是后面附加一上标的“+”号,例如代表掺杂浓度非常高的n型半导体,反之例如则代表轻掺杂的p型半导体。需要特别说明的是即使掺杂浓度已经高到让半导体退化为导体,掺杂物的浓度和原本的半导体原子浓度比起来还是差距非常大。以一个有晶格结构的本征半导体而言,原子浓度大约是5×1022 cm-3,而一般集成电路制程里的掺杂浓度约在1013 cm-3至1018 cm-3之间。掺杂浓度在1018 cm-3以上的半导体在室温下通常就会被视为是一个简并半导体。重掺杂的半导体中,掺杂物和半导体原子的浓度比约是千分之一,而轻掺杂则可能会到十亿分之一的比例。在半导体制程中,掺杂浓度都会依照所制造出元件的需求量身打造,以合于使用者的需求。

掺杂对半导体能带结构的影响

掺杂之后的半导体能带会有所改变。依照掺杂物的不同,本征半导体的能隙之间会出现不同的能阶。施体原子会在靠近导带的地方产生一个新的能阶,而受体原子则是在靠近价带的地方产生新的能阶。假设掺杂原子进入,则因为的能阶到硅的价带之间仅有0.045电子伏特,远小于本身的能隙1.12电子伏特,所以在室温下就可以使掺杂到里的原子完全解离化。

Thumb
正向偏置下的PN结,表现为耗尽层变薄。在p端与n端均掺杂1e15/cm3水平,导致内在电势~0.59 V。蓝色实线代表能带,红色虚线代表准费米能级。在p型一侧,准费米能级距价带较近;在n型一侧,准费米能级距离导带较近。

掺杂物对于能带结构的另一个重大影响是改变了费米能阶的位置。在热平衡的状态下费米能阶依然会保持定值,这个特性会引出很多其他有用的电特性。举例来说,一个p-n结的能带会弯折,起因是原本p型半导体和n型半导体的费米能阶位置各不相同,但是形成p-n结后其费米能阶必须保持在同样的高度,造成无论是p型或是n型半导体的导带或价带都会被弯曲以配合界面处的能带差异。

上述的效应可以用能带图英语Band diagram来解释,如右图。在能带图里横轴代表位置,纵轴则是能量。图中也有费米能阶,半导体的本征费米能阶(Intrinsic Fermi level)通常以来表示。在解释半导体元件的行为时,能带图是非常有用的工具。

参考资料

  • Turley, Jim. The Essential Guide to Semiconductors. Prentice Hall PTR. 2002. ISBN 978-0-13-046404-0.
  • Yu, Peter Y.; Cardona, Manuel. Fundamentals of Semiconductors : Physics and Materials Properties. Springer. 2004. ISBN 978-3-540-41323-3.

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.