Remove ads

对数微分法(英语:Logarithmic differentiation)是在微积分学中,通过求某函数f对数导数英语Logarithmic derivative来求得函数导数的一种方法, [1]

这一方法常在函数对数求导比对函数本身求导更容易时使用,这样的函数通常是几项的积,取对数之后,可以把函数变成容易求导的几项的和。这一方法对幂函数形式的函数也很有用。对数微分法依赖于链式法则对数的性质(尤其是自然对数),把积变为求和,把商变为做差[2][3]。这一方法可以应用于所有恒不为0的可微函数

Remove ads

概述

对于某函数

运用对数微分法,通常对函数两边取绝对值后取自然对数[4]

运用隐式微分法[5],可得

两边同乘以y,则方程左边只剩下dy/dx

对数微分法有用,是因为对数的性质可以大大简化复杂函数的微分[6],常用的对数性质有:[3]

Remove ads

通用公式

有一如下形式的函数,

两边取自然对数,得

两边对x求导,得

两边同乘以,可得原函数的导数为

Remove ads

应用

积函数

对如下形式的两个函数的积函数

两边取自然对数,可得如下形式的和函数

应用链式法则,两边微分,得

整理,可得[7]

Remove ads

商函数

对如下形式的两个函数的商函数

两边取自然对数,可得如下形式的差函数

应用链式法则,两边求导,得

整理,可得

右边通分之后,结果和对运用除法定则所得结果相同。

Remove ads

复合指数函数

对于如下形式的函数

两边取自然对数,可得如下形式的积函数

应用链式法则,两边求导,得

整理,得

与将函数f看做指数函数,直接运用链式法则所得结果相同。

Remove ads

参见

参考文献

外部链接

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.

Remove ads