Loading AI tools
来自维基百科,自由的百科全书
射电星系是在无线电波长上非常明亮的星系。它们有活动星系核,或者说,可能有类星体、耀变体。它们从10 MHz到100 GHz的光度流量累计达1039 W。[1] 在星系中央,两道喷流和周围的介质发生了相对论性发光,发射了同步辐射。射电星系可以在遥远的距离外被观测到,可以做为观测宇宙学上可贵的工具。研究集中在星际物质和星系团上。
来自电波喧噪活动星系的电波发射是同步加速辐射,被臆测是非常平滑的、自然的宽频和高度偏振。这暗示发射电波的等离子体包含,至少是,有相对论性速度(洛仑兹因子大约在~104)的电子和磁场。因此等离子体必然是中性的,质子或正子必然是其中的成分之一,但是没有办法从同步加速辐射中直接观察出微粒的种类。而且,没有办法从观测中确定微粒和磁场的能量密度(也就是说,相同的同步加速辐射可以来自强磁场的少数几个电子,也可以是来自弱磁场的大量电子)。它是可能在特定的发射区域内,以给定的发射率,在最低的能量密度下测量出的最低能量状态(Burbidge 1956),但多年来没有特别的理由可以相信在真实状况中,任何地方的能量都在极小能量的附近。
一种与同步加速辐射是姐妹程序的是逆康普顿过程,相对论性的电子与四周的光子作用,经由汤姆森散射提高能量。来自电波喧噪源的逆康普顿发射特别重要的结果是X射线(e.g. Croston et al. 2005),因为他只与电子的密度有关(和已经知道的光子密度),对逆康普顿散射的测量允许我们估计粒子和磁场的能量密度(依赖某些模型)。这可以用来论证是否多数来源的情况都接近于极小值能量的附近。
同步加速辐射没有被限制在电波的波长范围内:如果射电源的粒子能被加速到足够的能量,在红外线、光学、紫外线或甚至在X射线,也都能检测到在电波区域的特性。但是,后述状况的电子必须获得超过1Tev的能量,而在通常状态下的磁场,电子很难获得如此高的能量。再一次,偏振和连续光谱被用于区别来自其他过程的同步加速辐射。喷流和热点(见下文)是常见的高频同步加速辐射的来源。在观测上要区别同步加速辐射和逆康普顿辐射是很困难的,幸好在进行的过程中在一些物体上会有一些歧异,特别是在X射线。
在产制相对论粒子的过程,同步加速辐射和逆康普顿辐射都被认为是粒子加速器。 费米加速在电波喧噪活动星系中似乎是有效的粒子加速过程。
射电星系结构多样,其实就是大家给照片上的不同形状起了不同名字。一个星系可以包含多种结构。有叫lobes的,plumes的等等。
有叫喷流(jets)的。喷流是一个或两个很长很窄的形状,一头是中心,一头是lobes(最著名的例子是处女座星团中的室女A星系(M87))
关于射电结构最被广泛接受的模型是1974年的两篇论文[2][3],它们说,喷流这种结构是活动星系核附近的 高能粒子发射、磁场作用的痕迹,所以“喷流”也指这种变化过程。
1974年,Fanaroff和Riley将射电源分为两类[4] ,现在称这为Fanaroff–Riley 分类,分为两种,FRI和FRII。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.