吸引子(Attractor)是微积分和系统科学论中的一个概念。一个系统有朝某个稳态发展的趋势,这个稳态就叫做吸引子。
此条目需要扩充。 (2015年6月8日) |
吸引子分为平庸吸引子和奇异吸引子(Strange Attractor)。例如一个钟摆系统,它有一个平庸吸引子,这个吸引子使钟摆系统向停止晃动的稳态发展。平庸吸引子有不动点(平衡)、极限环(周期运动)和整数维环面(概周期运动)三种模式。而不属于平庸的吸引子的都称为奇异吸引子,它表现了混沌系统中非周期性,无序的系统状态,例如天气系统。
对于吸引子,学术上并没有完善的定义,目前仅处于概念阶段。吸引子中的奇异吸引子对于混沌系统的研究意义重大。
定义
设代表时间、是用来确定动力系统状态的函数。也就是说,如果是维相空间的一个点,代表系统的初始状态,则且对每个正实数有代表经过单位时间后的状态。举例来说,如果一系统描述一维上某不受力粒子的演进,此时相空间是平面,其坐标中的是粒子的位置,是粒子的速度。那么就有
- 在下不随时间变化,从而如果就有对所有正实数。
- 存在的邻域(英文是basin of attraction),使得该域中任何点在时间趋于无限时都会趋近,或者更精准的是满足以下叙述:
- 对任何的邻域和,存在正实数使得对所有。
- 不存在的非空子集可以取代满足前面两点性质。
种类
吸子是动力系统中相空间的子集。在公元1960年代前,吸子仍被认为有“简单的”几何形状,例如点、直线、平面等。但吸子的形状事实上可能相当复杂, 斯梅尔证明其马蹄映射的吸子有康托尔集的结构。
两种简单的吸子是不动点和极限环。也有的吸子无法使用基本的几何对象的组合来描述,那么他就被称作奇异吸子。
一个吸子被称为奇异(strange)如果他具有分形结构[2],这常常出现在动力系统是混乱的时,但奇异非混乱吸子也是存在的。
若一奇异吸子是混沌的,则其对初始条件敏感。也就是任意两个极为接近的初始点,在一定数量的迭代运算后,两者可以相距甚远;也可以再经过一定数量的迭代运算后又变得极为靠近。也因此,一个具有混沌吸子的动力系统在局域是不稳定的,然而广域来看却可以是稳定的,因为这些动态点再怎么彼此分离,也都不会离开吸子。
奇异吸子这个词最早是由吕埃勒与Floris Takens所命名,用以描述流体系统经一连串分岔所产生的吸子结果。[3]
参考资料
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.