中密歇根大学Theta Pi, Sigma Tau Gamma, Alpha Sigma Phi,和Sigma Lambda Beta. 女性學生團體(又名:姐妹會):Delta Phi Epsilon, Sigma Sigma Sigma, Phi Sigma Sigma, Zeta Tau Alpha, Alpha
简单类型λ演算{\displaystyle \alpha ,\beta ,\gamma ,\dots } ,给定类型 σ , τ {\displaystyle \sigma ,\tau \,} 我们能构造 σ → τ {\displaystyle \sigma \to \tau } 。邱奇只使用了两个基本类型, o {\displaystyle
弹性力学{1}{E}}\left[\sigma _{x}-\nu \left(\sigma _{y}+\sigma _{z}\right)\right],\quad \gamma _{yz}={\frac {1}{G}}\tau _{yz}\\\epsilon _{y}={\frac {1}{E}}\left[\sigma _{y}-\nu
拉莫爾進動{\displaystyle a^{\tau }a_{\tau }=-u^{\tau }u_{\tau }=-1} , u τ a τ = 0 {\displaystyle u^{\tau }a_{\tau }=0} , and F τ σ {\displaystyle F^{\tau \sigma }} 电磁场的强度。利用运动方程,
应变能{1}{2}}(\sigma _{x}\epsilon _{x}+\sigma _{y}\epsilon _{y}+\sigma _{z}\epsilon _{z}+\tau _{xy}\gamma _{xy}+\tau _{xz}\gamma _{xz}+\tau _{yz}\gamma _{yz})