华东师范大学数学系. 数学分析 上册 第三版. 高等教育出版社. 2006: 第219页.
由微积分基本性质,当被积函数在[a,b]上连续时,原函数在[a,b]上是可导的,而拉格朗日定理的假设是“f(x)在(a,b)内可导"
所以原文中“知F(x)在[a,b]上连续,在[a,b]内可导,应用拉格朗日中值定理,可得:”应该改为
“知F(x)在[a,b]上连续,在(a,b)内可导,应用拉格朗日中值定理,可得:”
否则无法排除ξ只取在a或者b上的可能
此说法并不严密。现根据以上对原定理的证明,来解释为什么
可以改为
。
因为
在
上连续,所以
在
上有最大值
和最小值
。设
,
,
,
,如果
,则
是常值函数,任取
即可。如果
,由于函数
连续且有一点
使
,所以由积分性质有
,即

同理可得
,故有

由连续函数的介值定理,至少存在一点
⊂
(或
⊂
),使得
,即

注:以上内容参考延边大学出版社《数学分析辅导及习题精解 华东师大.第四版 上册》