中文
Sign in
AI tools
热门问题
时间线
聊天
视角
Loading AI tools
全部
文章
字典
引用
地图
拓扑量子数
来自维基百科,自由的百科全书
Found in articles
拓撲量子場論
理论提供一个简化计算的逼近的非物理的模型。 陳-西蒙斯理論 张量范畴
量子
拓
扑
学(英语:
量子
拓
扑
学)
拓扑
缺陷 物理中的
拓扑
熵(英语:物理中的
拓扑
熵)
拓扑
有序(英语:
拓扑
有序)
拓扑
量子
数
(英语:
拓扑
量子
数
)
拓扑
弦论 算术
拓扑
配边假设(英语:配边假设) Atiyah, Michael, Topological
拓扑绝缘体
拓扑
绝缘体是一种内部绝缘,界面允许电荷移动的材料。 在
拓扑
绝缘体的内部,电子能带结构和常规的绝缘体相似,其费米能级位于导带和价带之间。在
拓扑
绝缘体的边界或是表面存在一些特殊的
量子
态,这些
量子
态位于块体能带结构的带隙之中,从而允许导电。
拓扑
绝缘体的块体可以用类似
拓
扑
学中的亏格的整数表征,是
拓扑
量子霍尔效应
被观测到,为弹道输运(ballistic transport)这一重要概念提供实验支持。 分数
量子
霍尔效应:勞夫林与J·K·珍揭示涡旋(vortex)和准粒子(quasi-particle)在凝聚态物理学中的重要性。 霍尔效应中出现的整数是一些
拓扑
量子
数
。在数学中,它们被称作陈
数
(Chern numbers),并且它们与贝利曲率(Berry
拓扑弦论
理论物理学中,
拓扑
弦论是弦论的一个版本,见于爱德华·威滕与卡姆朗·瓦法等人的论文,与威滕早期的
拓扑
量子
场论思想相类。
拓扑
弦论有两种变体:
拓扑
A模型与
拓扑
B模型。
拓扑
弦论的计算结果一般编码了完整弦论中的所有全纯量,其值受时空超对称性保护。
拓扑
弦论中的各种计算与陈-西蒙斯理论、格罗莫夫–威滕不变量、镜像对称、几何朗兰兹纲领等很多主题。
拓扑简并
在
量子
多体物理中,
拓扑
简并是指有能隙的多体哈密顿量在大系统尺寸极限下的基态简并现象,这种基态简并不会被局域微扰破坏。
拓扑
简并可以用于保护允许进行
拓扑
量子
计算的
量子
比特。人们认为
拓扑
简并意味着基态中存在
拓扑
序(或长程纠缠)。 具有
拓扑
简并的多体态可以用低能
拓扑
量子
场论描述。
拓扑
简并最早是在定义
拓扑