广义相对论中,克尔度规(英语:Kerr metric)或称克尔真空(英语:Kerr vacuum),描述的一旋转球对称之质量庞大物体(例如:黑洞)周遭真空区域的时空几何。其为广义相对论的精确解英语Exact solutions in general relativity,故又称克尔解;广义相对论的主导方程——爱因斯坦场方程是非线性的,找出其精确解是相当困难的任务。

克尔度规史瓦西度规(1915年)的推广,后者用以描述静态不旋转、球对称且不带电荷的庞大物体周遭真空区域的时空几何。在有带电荷的情形,史瓦西度规转成雷斯勒-诺德斯特洛姆度规(1916年–1918年)。约瑟夫·冷泽英语Josef Lense汉斯·提尔苓英语Hans Thirring曾使用弱场近似方法得到过旋转轴对称球状物体度规的近似解。直到在1963年方由罗伊·克尔提出精确解。[1],但他并没有给出推导过程。1973年Schiffer等人给出了克尔度规的推导[2]

克尔度规的带电荷版本为克尔-纽曼度规(1965年),以上四个相关的解可整理为如下表格:

不旋转 (J = 0) 旋转 (J ≠ 0)
不带电荷 (Q = 0) 史瓦西度规 克尔度规
带电荷 (Q ≠ 0) 雷斯勒-诺德斯特洛姆度规 克尔-纽曼度规

其中Q代表物体所带电荷,而J代表物体的自转角动量

faviconfavicon
2 sources

克尔度规的数学表示

若以波义耳-林德奎斯特坐标写出克尔真空解,则为:

其中

,
,
  • M为旋转物体质量;
  • a为自转参数(spin parameter)或称特定角动量(specific angular momentum),描述此物体的旋转,与角动量J有关,关系式为a = J/M
  • 所有的物理量采用几何单位c=G=1。

当自转参数a值为零,则表示物体无旋转,克尔度规退化成史瓦西度规a=M的例子对应到最大旋转程度的质量物体。

注意到:

  • 一般而言,波义耳-林德奎斯特径向坐标 r 并无简单而直接、如同径向坐标般的诠释。
  • “最大”旋转程度指的是一黑洞可以存在的最大a值,而非旋转质量物体可以具有的最大a值。

参看

参考文献

延伸阅读

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.