倍频程(英语:octave band),又称为倍频带,是振动与噪音分析中将整个频谱划分为若干频带的方法,每个频带的上限频率是下限频率的两倍。类似地,1/3倍频程(one-third octave band)指每个频带的上限频率与下限频率之比是2的立方根。
此条目或其章节极大或完全地依赖于某个单一的来源。 (2019年4月3日) |
倍频程
1 sources
假设每个频带的中心频率为,该频带的上限频率与下限频率可由下式计算:
- ,
其中为下限频率,为上限频率。
频带序号 | 标称频率[1] | 计算频率 | A计权修正 |
---|---|---|---|
-1 | 16 Hz | 15.625 Hz | |
0 | 31.5 Hz | 31.250 Hz | -39.4 dB |
1 | 63 Hz | 62.500 Hz | -26.2 dB |
2 | 125 Hz | 125.000 Hz | -16.1 dB |
3 | 250 Hz | 250.000 Hz | -8.6 dB |
4 | 500 Hz | 500.000 Hz | -3.2 dB |
5 | 1k Hz | 1000.000 Hz | 0 dB |
6 | 2k Hz | 2000.000 Hz | 1.2 dB |
7 | 4k Hz | 4000.000 Hz | 1 dB |
8 | 8k Hz | 8000.000 Hz | -1.1 dB |
9 | 16k Hz | 16000.000 Hz | -6.6 dB |
1 sources
1/3倍频程
%% Calculate Third Octave Bands (base 2) in Matlab
fcentre = 10^3 * (2 .^ ([-18:13]/3))
fd = 2^(1/6);
fupper = fcentre * fd
flower = fcentre / fd
%% Calculate Third Octave Bands (base 10) in Matlab
fcentre = 10.^(0.1.*[12:43])
fd = 10^0.05;
fupper = fcentre * fd
flower = fcentre / fd
频带序号 | 标称频率 | 计算频率(以2为基数) | 计算频率(以10为基数) |
---|---|---|---|
1 | 16 Hz | 15.625 Hz | 15.849 Hz |
2 | 20 Hz | 19.686 Hz | 19.953 Hz |
3 | 25 Hz | 24.803 Hz | 25.119 Hz |
4 | 31.5 Hz | 31.250 Hz | 31.623 Hz |
5 | 40 Hz | 39.373 Hz | 39.811 Hz |
6 | 50 Hz | 49.606 Hz | 50.119 Hz |
7 | 63 Hz | 62.500 Hz | 63.096 Hz |
8 | 80 Hz | 78.745 Hz | 79.433 Hz |
9 | 100 Hz | 99.213 Hz | 100 Hz |
10 | 125 Hz | 125.000 Hz | 125.89 Hz |
11 | 160 Hz | 157.490 Hz | 158.49 Hz |
12 | 200 Hz | 198.425 Hz | 199.53 Hz |
13 | 250 Hz | 250.000 Hz | 251.19 Hz |
14 | 315 Hz | 314.980 Hz | 316.23 Hz |
15 | 400 Hz | 396.850 Hz | 398.11 Hz |
16 | 500 Hz | 500.000 Hz | 501.19 Hz |
17 | 630 Hz | 629.961 Hz | 630.96 Hz |
18 | 800 Hz | 793.701 Hz | 794.33 Hz |
19 | 1 kHz | 1000.000 Hz | 1000 Hz |
20 | 1.25 kHz | 1259.921 Hz | 1258.9 Hz |
21 | 1.6 kHz | 1587.401 Hz | 1584.9 Hz |
22 | 2 kHz | 2000.000 Hz | 1995.3 Hz |
23 | 2.5 kHz | 2519.842 Hz | 2511.9 Hz |
24 | 3.150 kHz | 3174.802 Hz | 3162.3 Hz |
25 | 4 kHz | 4000.000 Hz | 3981.1 Hz |
26 | 5 kHz | 5039.684 Hz | 5011.9 Hz |
27 | 6.3 kHz | 6349.604 Hz | 6309.6 Hz |
28 | 8 kHz | 8000.000 Hz | 7943.3 Hz |
29 | 10 kHz | 10079.368 Hz | 10 kHz |
30 | 12.5 kHz | 12699.208 Hz | 12.589 kHz |
31 | 16 kHz | 16000.000 Hz | 15.849 kHz |
32 | 20 kHz | 20158.737 Hz | 19.953 kHz |
参考文献
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.