分部積分法 分部積分法又稱作部分積分法(英語:Integration by parts),是一種積分的技巧。它是由微分的乘法定則和微積分基本定理推導而來的。其基本思路是将不易求得结果的积分形式,转化为等价的但易于求出结果的积分形式。 假設 h ( x ) {\displaystyle h(x)\ } 與 k
不定积分 不定積分(英語:Indefinite Integration ),也可稱反導函數(Antiderivative)或原函数。在微积分中,函数 f {\displaystyle f} 的不定积分是一个可微函數 F {\displaystyle F} ,其导数等于原來的函數 f {\displaystyle
拉格朗日乘数在数学中的最优化问题中,拉格朗日乘数法(英語:Method of Lagrange multiplier,以数学家约瑟夫·拉格朗日命名)是一种寻找多元函数在其变量受到一个或多个条件的约束时的局部极值的方法。 對一個有 n {\displaystyle n} 个变量与 k {\displaystyle
時間序列 ) {\displaystyle X(t)} 和 Y ( t ) {\displaystyle Y(t)} 各自有整合階(英语:Order of integration ) I ( x ) {\displaystyle I(x)} 和 I ( y ) {\displaystyle I(y)} ,而將兩序列做某種線性組合後的序列
换元积分法 换元积分法,又稱變數變換法(英語:Integration by substitution),是求积分的一种方法,由链式法则和微积分基本定理推导而来。 设 f ( x ) {\displaystyle f(x)\ } 为可积函数, g = g ( x ) {\displaystyle g=g(x)\