二階無限面體堆砌三階正方形鑲嵌蜂巢體(英语:Square tiling honeycomb) 三階六邊形鑲嵌蜂巢體 四階無限面體堆砌 - 雙曲面密鋪 四階三角形鑲嵌蜂巢體(英语:Order-4 triangular tiling honeycomb) 四階正方形鑲嵌蜂巢體(英语:Order-4 square tiling honeycomb) 四階六邊形鑲嵌蜂巢體(英语:Order-4
截角二十面體部分均勻星形多面體和一個星形二十面體的凸包為非半正的截角二十面體: 在雙曲空間中,過截角五階十二面體堆砌(Truncated order-5 dodecahedral honeycomb)由截角二十面體獨立堆砌而成,在考克斯特記號中,計為,其頂點圖為鍥形體。 在四維空間中,部份多胞體含有截角二十面體形狀的胞,例如大斜方六百胞體(Great
正扭歪無限面體四角六片四角孔扭歪無限面體(多立方體、英語:Mucube):{4,6|4}:每個頂點都是六個正方形的公共頂點 六角四片四角孔扭歪無限面體(多八面體、英語:Muoctahedron):{6,4|4}:每個頂點都是四個六邊形的公共頂點 六角六片三角孔扭歪無限面體(多四面體、英語:Mutetrahedron):{6
三階六邊形鑲嵌蜂巢體rosphere)(雙曲三維極限圓(英语:Horocycle))上。三階六邊形鑲嵌蜂巢體的頂點圖為正四面體,代表著三階六邊形鑲嵌蜂巢體的每個頂點都是4個正六邊形鑲嵌的公共頂點。 三階六邊形鑲嵌蜂巢體在施萊夫利符號計為 {6,3,3} ,其中 {6,3} 正六邊形鑲嵌,加一個3表示每條稜都是三個正六邊形鑲嵌的公共邊。其頂點圖為
六角柱2個正方形和1個正六邊形的公共頂點,因此具有點可遞的性質,又因其所有面都是正多邊形因此是一種半正多面體,且其為以正方形為側面的半正柱體無窮系列中的第4個幾何體。六角柱亦可以視為一種截角六面形,並可以以施萊夫利符號t{2,6}表示。 已知底面邊長 a {\displaystyle a} , 和高 h