CKM矩陣的電弱標準模型定義為 此處的 和 分別為可以將上型夸克與下型夸克的質量矩陣和對角化的么正轉換矩陣(unitary transformation matrix)。
因此,要得到一個帶有複數的CKM矩陣需有以下兩個必要但非充分條件:
- 和 其中至少須有一個帶有複數,否則CKM矩陣必為純實數。
- 即使兩者皆帶有複數, 和 不可以相同,亦即 ,否則CKM矩陣必為單位矩陣。
以一個有三代費米子的標準模型來說,費米子質量矩陣(夸克與輕子都適用)的最通用形式可以寫成如下樣式:
這樣的非赫米爾特(non-Hermitian)M矩陣有9個複數元素以及18個參數,因為每個複數元素各有2個參數,一個是實數部的系數,一個是虛數部的系數。這樣的3X3矩陣顯然難以被直接對角化。然而,這樣的矩陣卻是自然為赫米爾特的,而且它和原來的非赫米爾特M矩陣擁有相同的U矩陣,這個矩陣可以表為
<
這個矩陣中的參數可以寫為M矩陣中的參數(=湯川偶合的對應參數*希格氏偶的真空期望值)的各種組合如下:
既然對角化一個有9個參數的矩陣結果跟對角化一個有18個參數的M矩陣一樣,那以 為對象就是很自然而合理的選擇。
這個問題的理想解法自然是將M和矩陣直接對角化求得其本徵值跟本徵向量(或相當於轉換矩陣U)。只是,即使是只有9個參數的 矩陣還是太複雜。所以,假設的實數部跟虛數部可以分別被同一個U矩陣對角化,那這個假設會引進底下這個關係式並進一步將參數由9個減少至5個
根據以上想法,可以進一步簡化為以下樣貌:
在此令 and 。
有解析解(analytical solutions),其本徵值如下:
而其對應的U矩陣則如下:
然而,這些本徵值的排列順序和物理上的夸克質量順序並無必然對應關係,所以同一型夸克的3個本徵值和3代夸克的對應方式有6種可能,上下夸克各6種,總共可以組合出36種CKM矩陣樣態[1]
[2]
在36種可能中,以下這4個在和實驗數據比對時最接近。在0階(tree level)時可以達到差異小於的程度
and
此處 為Wolfenstein參數之一。
求得和 的完整樣貌如下:
和實驗所得的CKM矩陣各元素比較得到的最佳結果為
自從1964年CP破壞被發現以來,物理學家相信在標準模型的框架下,只要找到適當的湯川偶合矩陣(乘上希格式偶的真空期望值v即為質量矩陣)並將之對角化,即可以產生帶有複數(亦即CP是不對稱)的CKM矩陣。以上論述具體指出了甚麼樣的質量矩陣能夠產生CP不守恆,填補了標準模型在這方面的空缺。