遞歸(英語:Recursion),又譯為遞迴,在數學與電腦科學中,是指在函數的定義中使用函數自身的方法。遞歸一詞還較常用於描述以自相似方法重複事物的過程。例如,當兩面鏡子相互之間近似平行時,鏡中巢狀的圖像是以無限遞歸的形式出現的。也可以理解為自我複製的過程。
正式定義
在數學和電腦科學中,遞歸指由一種(或多種)簡單的基本情況定義的一類物件或方法,並規定其他所有情況都能被還原為其基本情況。
例如,下列為某人祖先的遞歸定義:
斐波那契數列是典型的遞歸案例:
- (初始值)
- (初始值)
- 對所有大於1的整數n:(遞歸定義)
儘管有許多數學函數均可以遞歸表示,但在實際應用中,遞歸定義的高開銷往往會讓人望而卻步。例如:
- (初始值)
- 對所有大於0的整數n:(遞歸定義)
一種便於理解的心理模型,是認為遞歸定義對物件的定義是按照「先前定義的」同類物件來定義的。例如:你怎樣才能移動100個箱子?答案:你首先移動一個箱子,並記下它移動到的位置,然後再去解決較小的問題:你怎樣才能移動99個箱子?最終,你的問題將變為怎樣移動一個箱子,而這時你已經知道該怎麼做的。
如此的定義在數學中十分常見。例如,集合論對自然數的正式定義是:1是一個自然數,每個自然數都有一個後繼,這一個後繼也是自然數。
以下是另一個可能更有利於理解遞歸過程的解釋:
- 我們已經完成了嗎?如果完成了,返回結果。如果沒有這樣的終止條件,遞歸將會永遠地繼續下去。
- 如果沒有,則簡化問題,解決較容易的問題,並將結果組裝成原始問題的解決辦法。然後返回該解決辦法。
這樣就有一種更有趣的描述:「為了理解遞歸,則必須首先理解遞歸。」或者更準確地,按照安德魯·普洛特金的解釋:「如果你已經知道了什麼是遞歸,只需記住答案。否則,找一個比你更接近侯世達的人;然後讓他/她來告訴你什麼是遞歸。」[1]
舉例:編寫一個程式使用遞歸求n的階乘:
Haskell:
fac 0 = 1
fac n = n * fac (n-1)
main = print( fac 10 )
語言中的例子
- 從前有座山,山裏有座廟,廟裏有個老和尚,正在給小和尚講故事呢!故事是什麼呢?「從前有座山,山裏有座廟,廟裏有個老和尚,正在給小和尚講故事呢!故事是什麼呢?『從前有座山,山裏有座廟,廟裏有個老和尚,正在給小和尚講故事呢!故事是什麼呢?……』」
- 一隻狗來到廚房,偷走一小塊麵包。廚子舉起杓子,把那隻狗打死了。於是所有的狗都跑來了,給那隻狗掘了一個墳墓,還在墓碑上刻了墓誌銘,讓未來的狗可以看到:「一隻狗來到廚房,偷走一小塊麵包。廚子舉起杓子,把那隻狗打死了。於是所有的狗都跑來了,給那隻狗掘了一個墳墓,還在墓碑上刻了墓誌銘,讓未來的狗可以看到:『一隻狗來到廚房,偷走一小塊麵包。廚子舉起杓子,把那隻狗打死了。於是所有的狗都跑來了,給那隻狗掘了一個墳墓,還在墓碑上刻了墓誌銘,讓未來的狗可以看到……』」
- 大雄在房裏,用時光電視看着從前的情況。電視畫面中的那個時候,他正在房裏,用時光電視,看着從前的情況。電視畫面中的電視畫面的那個時候,他正在房裏,用時光電視,看着從前的情況……
數學之應用
遞歸定義集
關於遞歸定義集的經典範例,可透過自然數來說明:
- 若, 則
- 滿足上述兩個條件之最小集合,即為自然數集合
另一個有趣範例為,公理系統中,所有可導出命題之集合
此集合稱為,可導出之命題之集合,因為在數學基礎方法中,依非建立性法構建的命題之集合,可能大於由公理系統及推理規則所遞歸構建出之集合,詳細請參見 哥德爾不完備定理
有限次分割法為幾何形式之遞歸,可用以創建類分形之圖案。次分割原則的運作如後所述,從多個已被有限個標籤標註的多邊形開始,接着每個多邊形僅根據其標籤,繼續細切到更小的多邊形,此一細切的過程可不斷重複。
參見
參考文獻
外部連結
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.