也可以將它定義為 r e c t ( ± 1 / 2 ) {\displaystyle \mathrm {rect} (\pm 1/2)} 的值為 0、1 或者未定義的值,另外也可以用 單位階躍函數 u ( t ) {\displaystyle u(t)} 來定義: r e c t ( t τ ) = u ( t + τ 2 ) − u ( t − τ 2 ) {\displaystyle \mathrm {rect} \left({\frac {t}{\tau }}\right)=u\left(t+{\frac {\tau }{2}}\right)-u\left(t-{\frac {\tau }{2}}\right)} 矩形函數 矩形函數的定義為, r e c t ( t ) = Π ( t ) = { 0 if | t | > 1 2 1 2 if | t | = 1 2 1 if | t | < 1 2 {\displaystyle \mathrm {rect} (t)=\Pi (t)={\begin{cases}0&{\mbox{if }}|t|>{\frac {1}{2}}\\[3pt]{\frac {1}{2}}&{\mbox{if }}|t|={\frac {1}{2}}\\[3pt]1&{\mbox{if }}|t|<{\frac {1}{2}}\end{cases}}} 或者, r e c t ( t ) = u ( t + 1 2 ) − u ( t − 1 2 ) {\displaystyle \mathrm {rect} (t)=u\left(t+{\frac {1}{2}}\right)-u\left(t-{\frac {1}{2}}\right)} 矩形函數歸一化: ∫ − ∞ ∞ r e c t ( t ) d t = 1 {\displaystyle \int _{-\infty }^{\infty }\mathrm {rect} (t)\,dt=1} 矩形函數的傅立葉變換, ∫ − ∞ ∞ r e c t ( t ) ⋅ e − i 2 π f t d t = sin ( π f ) π f = s i n c ( f ) {\displaystyle \int _{-\infty }^{\infty }\mathrm {rect} (t)\cdot e^{-i2\pi ft}\,dt={\frac {\sin(\pi f)}{\pi f}}=\mathrm {sinc} (f)} 或用用歸一化Sinc函數表示為: 1 2 π ∫ − ∞ ∞ r e c t ( t ) ⋅ e − i ω t d t = 1 2 π ⋅ s i n c ( ω 2 ) {\displaystyle {\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }\mathrm {rect} (t)\cdot e^{-i\omega t}\,dt={\frac {1}{\sqrt {2\pi }}}\cdot \mathrm {sinc} \left({\frac {\omega }{2}}\right)} , 我們可以將三角形函數定義為兩個矩形函數的卷積: t r i ( t ) = r e c t ( t ) ∗ r e c t ( t ) {\displaystyle \mathrm {tri} (t)=\mathrm {rect} (t)*\mathrm {rect} (t)} 如果將矩形函數當作一個概率分佈函數,那麼它的特徵函數是, φ ( k ) = sin ( k / 2 ) k / 2 {\displaystyle \varphi (k)={\frac {\sin(k/2)}{k/2}}\,} 並且它的動差生成函數為, M ( k ) = s i n h ( k / 2 ) k / 2 {\displaystyle M(k)={\frac {\mathrm {sinh} (k/2)}{k/2}}\,} 其中 s i n h ( t ) {\displaystyle \mathrm {sinh} (t)} 是雙曲正弦函數。 參見 傅立葉變換 方波 三角形函數 Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.