Loading AI tools
来自维基百科,自由的百科全书
電磁脈衝(英文:Electromagnetic Pulse,縮寫:EMP)是一種物理現象,有以下兩種意思:
此條目需要補充更多來源。 (2018年7月27日) |
由一個核爆炸或一個小行星撞擊產生的電磁脈衝,其能量的大部分頻寬介於3赫茲到30000赫茲之間。
電磁脈衝的最長持續時間通常只有一秒鐘。任何沒有受到保護的電器和連接到電線的東西,如電力系統、電子設備、微晶片等都會受到電磁脈衝的影響而導致無法修復的損壞,而且電磁脈衝會造成大氣層電荷密度的劇烈改變,使超高頻以下的各種波段產生干擾,使通訊暫時阻斷。使用真空管(電子管)的舊式設備則不容易受到電磁脈衝的攻擊,但也僅僅限於真空管本身,比如真空管收音機裏的硒整流器等亦是容易受到摧毀的固態元件;冷戰時期蘇聯和美國的飛行器有很多航空電子設備仍使用真空管。也有一些網站探討相關的方法來防止家中或企業中的電器被電磁脈衝波所攻擊。
此效應最早是由空投的核爆被發現的。而在廣島和長崎投擲原子彈的飛機未受到因電磁脈衝影響而造成電子系統的損傷,是因為當核爆炸的高度在10公里以下時,因γ射線從空氣粒子中噴出的電子迅速被其周圍的空氣粒子阻擋而停止,所以這些電子不會被地球磁場影響(在高空的核武器試爆中,地球磁場造成的偏轉會讓電磁脈衝變得可見)。事實證明低空核爆只會造成有限的電磁效應。
如果當時運載小男孩原子彈和胖子原子彈的B-29,在炸彈於廣島、長崎上空爆炸時飛行在強烈的核輻射區域之內,那麼他們將會遭受(輻形)電磁脈衝作用導致的光致電荷分離(Photoinduced charge separation)。但這只有在他們待在核爆的暴風半徑內,並且是個爆炸高度低於10公里的核爆時才會發生。
在1962年的核彈測試期間,負責攝影的KC-135飛機遭受到電磁脈衝的影響,來自300公里外的41萬噸級 Bluegill Triple Prime 和41萬噸王魚(Kingfish)核彈引爆(兩者的引爆高度分別是48和95公里)[2]。但是該架飛機的重要電子儀器不如今日的複雜,因此它得以順利返回基地。
一般而言電磁脈衝對生物體沒有任何影響,但在電磁脈衝發生時靠近電力及電器設備等足以大量聚集電磁脈衝波物品的生物體可能因瞬間的超高電壓而灼傷、休克甚至死亡。
電磁脈衝是一種突發的、寬帶電磁輻射的高強度脈衝。所在電磁頻段取決於EMP源。核武器高空爆炸產生一種強電磁脈衝。由於爆炸持續相當長一段時間,所以它含有強的低頻分量(<100MHz)。常規EMP裝置是用炸藥驅動的高功率微波技術來製造的,它產生一個次強、超短(納秒)脈衝,主要微波頻段為100MHz-100GHz。EMP作用範圍取決於源的強度,正像電磁衝擊波從源發出以連續遞減強度的方式傳播一樣。
伽瑪輻射通過裂變彈或聚變彈與大氣的相互作用來產生。通過它撞擊大氣中的電子建立一個正、負電荷的大區域。這些電荷的運動產生電磁脈衝。脈衝進入該區間所有未屏蔽的電路,造成從電路故障、存貯數據丟失、直到過熱與熔化的破壞。
用小型脈衝功率源(吉瓦量級)、電能變換器和高功率微波元件(例如,虛陰極振盪器)加以配套來產生軍用電磁脈衝。常規電磁脈衝裝置的優點是觸發時間極短、輸出能量集中在較高的微波頻率上(>100MHz)。因為現代電子設備主要工作於這些微波頻段,所以常規電磁脈衝關閉電子設備極為有效、潛力很大。爆炸泵激的電磁脈衝裝置(例如虛陰極振盪器)還有另一個優點:可將其設計成使它們的電磁脈衝聚束在一個特定的方向。甚至,常規裝置產生的聚束電磁脈衝效應有一個致命半徑,量級約為幾百米到幾千米,取決於功率源的強度和大氣吸收,特別是當頻率大於20GHz時。
美國空軍菲利普實驗室已製造出小型等離子螺旋管(toroids)。它有約10千焦耳的能量。等離子螺旋管對準固態靶,在靶表面上迅速感應加熱,產生極大的機械與熱衝擊以及X光脈衝。這個X光脈衝也能用來產生電磁脈衝。儘管理論上預測螺旋管產生的高能等離子會因大氣而迅速耗散,但是,可能有一種好方法將高能等離子送到近區靶,不包括空氣中的長路徑。
現在,電磁脈衝武器主要被分為核爆電磁脈衝武器與非核電磁脈衝武器兩種。空間核爆炸的幾次試驗已揭示出:核電磁脈衝效應的大小,炸彈當量的影響比核空爆高度的影響要小。在高度60英里處產生100千噸空爆時,造成電磁脈衝破壞區可以遍及半個美國。在高度300英里處同樣當量的爆炸,則EMP破壞區可以遍及整個美國另加上墨西哥與加拿大的大部分地區。由一種(純理論)微當量核裝置產生的伽瑪脈衝用來產生可控制的EMP效應。
被電磁脈衝打擊的電器件經受從外沿上的暫時電子破壞直到近中心的過壓摧毀。現代半導體器件,特別是基於MOS技術的那些器件(例如商用計算機)由於瞬變高壓而最易損壞。地面長線路(例如電傳輸線)充當電磁脈衝的巨大天線。因此,電源傳輸網絡與通訊網絡是極易損壞的。它們很可能被電磁脈衝所摧毀。任何含半導體的電子設備包括機載平台的系統都可能被電磁脈衝關閉或燒毀,除非該系統採用笨重而昂貴的電磁屏蔽、良好設計的濾波器和仔細接地等措施來加以完全保護。核武器空爆產生的電磁脈衝是一種極有效的區域武器。毫無疑問,它將破壞城市基礎設施。
更靈活類型的EMP武器系統既可用微當量核武器(當量低於2千噸)、常規爆炸驅動的電磁脈衝裝置,又可用等離子技術來產生EMP。微當量核武器或常規電磁脈衝裝置可作為炸彈可能裝到穿梭機(TAV)上或作為導彈彈頭投到目標近處。但是,電磁脈衝對電、電子設備的破壞效應是不可預見的,這些電磁脈衝打擊力量最好用來對付依靠複雜電子設備的敵方平台與設施,特別是敵方的指揮、控制與通訊系統(戰略目標)和敵方的空防系統(作戰目標)。配備EMP彈頭的導彈也是戰鬥中獲取空中優勢的有效武器,因為現代高性能的戰鬥機緊緊依靠複雜而易損的電子設備。
核爆產生的電磁脈衝效應的主要麻煩是它會無差別破壞有效範圍的所有電子設備。它既可能對敵軍造成影響,但同時亦可能破壞友軍的設備。使用核驅動EMP武器的另一個障礙是世界都厭惡核武器,特別是彈道導彈。一旦核彈在太空爆炸,它所產生的帶電微粒容易被地球的范愛倫輻射帶捕獲。凡經過輻射帶附近的衛星都會受到強烈的輻射照射,從而摧毀屏蔽薄弱的衛星。帶電粒子會在輻射帶中停留很長一段時間,使敵友雙方都不能使用該空域。
以電磁脈衝進行攻擊的場景常出現在小說及電影中,不過效果通常因戲劇效果而被誇大。一個有名的例子是美國電視連續劇《24小時反恐任務》第八季的第12集中,恐怖分子利用以電磁脈衝原理製成的炸彈,破壞了美國反恐局的設備及運作機制。 最早美國荷里活電影「恐懼的總和」就有描述恐怖份子想要利用一枚核彈頭在地面(巴爾地摩足球場)引爆後殺死美國總統,造成傑克·萊恩乘坐的直昇機掉落地面的情節。
在美商藝電的《極速快感:熱力追蹤》、《戰地風雲4》張將軍發射電磁脈衝彈壓制上海市,使上海市大範圍停電,也使墓碑小隊無法與位於東海的美國海軍第七艦隊取得聯繫。《戰地風雲:Hardline》中也有出現類似武器。《命令與征服:將軍》中國將軍能力升級擁有空投電磁脈衝彈的能力,會造成建築物及地面載具暫時無法使用,受影響空中載具會直接墜毀。美國超級武器將軍擁有電磁脈衝愛國者系統。
《使命召喚:現代戰爭2》中以空爆核彈達到電磁脈衝的效果,壓制俄軍在華盛頓的行動。
《俠盜獵車手5》的搶劫任務「突襲人道研究實驗室」,必須以電磁脈衝裝置,損毀部分區域的所有電子設備,來達到任務目標。奇妙的是,使用電磁脈衝之後,區域內的電腦竟然還能使用,且電磁脈衝裝置原置於在戰機的機首雷達部位,令人非常不解。
日本動畫《學園默示錄》中,美國向日本發射核彈,儘管海上自衛隊的金剛級驅逐艦全力擊落,但仍然有一發漏網之魚,進而造成電磁脈衝攻擊的完成。
韓劇《Three Days》中,也曾出現EMP武器攻擊導致所有電子設備、手錶等無法使用的情形。
2010年美劇《24小時反恐任務(第八季)》第12集中恐怖份子利用EMP破壞CTU的電子設備。
2014年臺灣華語電影《痞子英雄2:黎明再起》中,也出現反派組織劫走「海港城」軍方的電磁脈衝火箭(EMP),並用它來癱瘓全城的電力、通訊與聯外交通系統的橋段。
《彩虹六號:圍攻》,特勤幹員Thatcher擁有EMP手榴彈。
《幽靈行動:荒野》可解鎖技能到無人機上。
《REDCON》中有EMP Blaster和飛船運載EMP彈。
《守望先鋒》中角色「黑影」的絕招是電磁脈衝波,可以使範圍敵人無法使用技能。
《少女前線》中2019夏季活動「裂變鏈接」關卡可以透過變電站啟動EMP裝置癱瘓周遭的軍方自律人形
2017年美國動作電影《速度與激情8》中唐老大開車衝進俄國核潛艇基地,通過啟動電磁脈衝儀器(EMP)癱瘓基地所有防禦系統和武器。
《86-不存在的戰區-》中第19集裏軍團的超長距離電磁脈衝砲對大範圍的電子設備造成無法回復的致命打擊。
《Apex 英雄》中暗碼士(Crypto)的大絕使用無人機釋放電磁脈衝,造成附近英雄緩速及50點護甲傷害。
日本動畫《亞人》中,佐藤等人使用了裝在卡車裏的電磁脈衝炸彈使大樓周遭幾百公尺範圍的電子客被遭到破壞。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.