在最佳化理論中,最大流問題(英語:Maximum flow problem)涉及到在一個單源點、單匯點的網絡流中找到一條最大的流。

Thumb
一個網絡最大流的例子。源點為 s,匯點為 t。數字表示流和容量。

最大流問題可以被看作是一個更複雜的網絡流問題(迴圈問題,circulation problem)的特殊情況。s-t流(從源點s到匯點t)的最大值等於s-t割的最小容量,這被稱為最大流最小割定理

歷史

最大流問題最早是在1954年由泰德·哈里斯英語Ted Harris (mathematician)和F·S·羅斯(F. S. Ross)通過一個蘇聯鐵路的交通流量的簡化模型提出的。[1][2][3] 1955年,小萊斯特·倫道夫·福特德爾伯特·雷·富爾克森建立了第一個已知的演算法,福特-富爾克森演算法[4][5]

多年來,最大流問題的各種改進演算法被發現,例如傑克·埃德蒙茲英語Jack Edmonds理查德·卡普葉菲姆·迪尼茨英語Yefim Dinitz最短增廣路演算法;迪尼茨的阻塞流演算法安德魯·V·戈德堡英語Andrew V. Goldberg羅伯特·塔揚的Push-Relabel演算法;戈德堡和Rao的binary阻塞流演算法;Christiano、Kelner和亞歷山大·馬德瑞(Aleksander Madry)的電流演算法;Spielman發現一個最大流近似最佳解,但僅適用於無向圖。[6][7]

定義

Thumb
一個網絡流,源點為 s,匯點為 t。邊上的數字為容量。

為一個網絡,其中分別是的源點和匯點()。

一個邊的容量為對映,記為。它表示可以通過一條邊的流量的最大值。
一個為一個對映,記為,遵循下面兩個限制:
  1. 對於每個,有(即容量限制:一個邊的流量不能超過它的容量);
  2. 對於每個,有(即流的保留:流入一個節點的流的總和必須等於流出這個節點的流的總和,源點和匯點除外)。
流量定義為 ,其中的源點,它表示從源點到匯點的流的數量。
最大流問題就是最大化,即從點到點儘可能規劃最大的流量。

解法

More information , ...
演算法 複雜度 描述
線性規劃
福特-富爾克森演算法 O(E max| f |)
埃德蒙茲-卡普演算法 O(VE2) 福特-富爾克森演算法的特例,使用廣度優先搜尋尋找增廣路徑.
迪尼茨阻塞流演算法 O(V2E)
MPM (Malhotra, Pramodh-Kumar and Maheshwari)演算法[8] O(V3) 只適用於無環圖。參考 Original Paper.
Dinic演算法 O(VE log(V))
push-relabel maximum flow演算法 O(V2E)
Push-relabel演算法,使用FIFO vertex selection rule O(V3)
Push-relabel演算法,使用 dynamic trees
KRT (King, Rao, Tarjan)演算法[9]
Binary阻塞流演算法[10]
James B Orlin's + KRT (King, Rao, Tarjan)演算法[11] Orlin's algorithm頁面存檔備份,存於互聯網檔案館) solves max-flow in O(VE) time for while KRT solves it in O(VE) for .
Close

參考文獻

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.