拋物線坐標系(英語:Parabolic coordinates)是一種二維正交坐標系,兩個坐標的等值曲線都是共焦的拋物線。將二維的拋物線坐標系繞着拋物線的對稱軸旋轉,則可以得到三維的拋物線坐標系。

Thumb
拋物線坐標系的綠色的 等值曲線和紅色的 等值曲線。橫軸與縱軸分別為 x-軸與 y-軸。

實際上,拋物線坐標可以應用在許多物理問題。例如,斯塔克效應Stark effect),物體邊緣的位勢論,以及拉普拉斯-龍格-冷次向量保守性

二維拋物線坐標系

直角坐標 可以用二維拋物線坐標 表示為

其中,

反算回來,二維拋物線坐標 可以用直角坐標 表示為

坐標 為常數的曲線形成共焦的,凹性向上的(往 +y-軸)拋物線

而坐標 為常數的曲線形成共焦的,凹性向下的(往 -y-軸)拋物線

這些拋物線的焦點的位置都在原點。

二維標度因子

拋物線坐標 的標度因子相等:

因此,面積的無窮小元素是

拉普拉斯算子

其它微分算子,像 ,都可以用 坐標表示,只要將標度因子代入在正交坐標系條目內的一般公式。

三維拋物線坐標系

Thumb
三維拋物線坐標的坐標曲面。紅色的拋物曲面的坐標 。藍色的拋物曲面的坐標 。黃色的半平面的坐標 。三個面相交於點 (以黑色小球表示)。

將二維的拋物線坐標系繞着拋物線的對稱軸旋轉,則可以得到三維的拋物線坐標系,又稱為旋轉拋物線坐標系。將對稱軸與 z-軸排列成同直線;而拋物線坐標系的共焦點與直角坐標系的原點同地點。直角坐標 可以用三維拋物線坐標 表示為

其中, ,方位角 定義為

反算回來,三維拋物線坐標 可以用直角坐標 表示為

每一個 -坐標曲面都是共焦的,凹性向上的(往 +z-軸)拋物曲面

而每一個 >-坐標曲面都是共焦的,凹性向下的(往 -z-軸)拋物曲面

這些拋物曲面的焦點的位置都在原點。

三維標度因子

三維標度因子為:

我們可以觀察出,標度因子 與二維標度因子相同。因此,體積的無窮小元素是

拉普拉斯算子

其它微分算子,像 ,都可以用 坐標表示,只要將標度因子代入在正交坐標系 條目內的一般公式。

第二種表述

另外還有一種拋物線坐標系的表述,專門用於哈密頓-亞可比方程式。假若使用此種表述的公式,則哈密頓-亞可比方程式可以很容易的分解出來。應用此方法,可以導引出拉普拉斯-龍格-冷次向量的恆定性.

採用下述從拋物線坐標變換至直角坐標的公式:

假若 ,則可得到一片截面;其坐標被限制於 的 +xz-半平面:

假若包含於一條曲線的每一點的坐標 是一個常數, ,則

這是一個共焦點在原點的拋物線;對稱軸與 z-軸同軸;凹性向上。

假若包含於一條曲線的每一點的坐標 是一個常數, ,則

這也是一個共焦點在原點的拋物線;對稱軸與 z-軸同軸;凹性向下。

思考任何一條向上的拋物線 與任何一條向下的拋物線 ,我們想要求得兩條曲線的相交點:

稍微計算,可得

將相交點的橫坐標 代入向上的拋物線的公式,

所以,相交點 P 坐標為

思考正切這兩條拋物線於點 P 的一對切線。向上的拋物線的切線的斜率為

向下的拋物線的切線的斜率為

兩個斜率的乘積為

所以,兩條切線相垂直。對於任何兩條凹性相反的拋物線,都會有同樣的結果。

假設 。讓 值從 緩慢增值,這半平面會相應地繞着 z-軸按照右手定則旋轉;拋物線坐標為常數的拋物線 形成了拋物曲面。一對相反的拋物曲面的相交 設定了一個圓圈。而 值設定的半平面,切過這圓圈於一個唯一點。這唯一點的直角坐標是[1]

favicon
1 sources

參考文獻

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.