埃瓦爾德求和(英語:Ewald summation),是一種計算週期性系統中長程力(如靜電力)的方法,以德國物理學家保羅·彼得·埃瓦爾德命名。埃瓦爾德求和最初用於計算離子晶體的電勢能,現在用於計算化學中計算長程力。埃瓦爾德求和是卜瓦松求和公式的特殊形式,用倒空間中的等效求和代替實空間中相互作用能的總和。埃瓦爾德求和將相互作用勢分為短程力和無奇異點的長程力兩部分,短程力在實空間中計算,長程力用傅立葉變換計算。與直接求和相比,此方法的優勢為能量能夠快速收斂,這意味着此方法在計算長程力時具有較高的精度和合理的速度,是計算週期性系統中長程力的標準方法。此方法需要分子系統的電中性,以準確計算總庫侖力[1]。
- 本條目中,向量與純量分別用粗體與斜體顯示。例如,位置向量通常用 表示;而其大小則用 來表示。
埃瓦爾德求和將相互作用勢表示為兩部分之和:
- ,
其中,表示實空間中和值快速收斂的短程勢,表示倒空間中和值快速收斂的長程勢。所有量(如r)的長程部分是有限的,但可能有簡易的數學形式,如高斯分佈。該方法假設短程勢容易求和,因此需要重點考慮的是長程勢。由於使用了傅立葉級數,該方法將週期性邊界條件作為假設,此週期性系統的重複單元稱為原胞,選擇一個原胞作為中央原胞作為參考,其餘單元稱為鏡像。
長程力的能量是中央原胞的電荷與晶格所有電荷間相互作用能之和,因此可以表示為原胞和晶格的電荷密度的雙重積分:
其中原胞的電荷密度是中央原胞中位置上的電量之和:
總電荷密度是原胞及其鏡像電量之和:
這裏,表示狄拉克δ函數,、、表示晶格向量,、、的範圍為所有整數。總電荷密度可以表示為與晶格函數的卷積:
由於為卷積,其傅立葉變換為一個積:
其中晶格函數的傅立葉變換是狄拉克δ函數的另一個和:
其中定義倒空間向量為(週期性排列),其中為中心原胞的體積(幾何形狀通常為平行六面體),和為實函數和偶函數。
為了簡潔起見,定義有效單粒子位能:
因為其亦為卷積,其傅立葉變換是一個積:
其中定義了傅立葉變換:
現在,長程力的能量可以表示為單個電荷密度的積分:
使用帕塞瓦爾定理,能量亦可於倒空間中求和:
其中是最終的和值。
計算出後,的和值或積分是顯然的,可以很快地收斂。不能收斂的最常見原因是原胞不太明確,其必須為電中性,以避免無窮大的和。
埃瓦爾德求和由德國物理學家保羅·彼得·埃瓦爾德於1921年發表,用於確定離子晶體的靜電能及馬德隆常數[6]。