在數學中,複數的共軛複數(常簡稱共軛)是對虛部變號的運算 複平面上 z {\displaystyle z} 和它的共軛複數 z ¯ {\displaystyle {\overline {z}}} 的表示。 Remove ads 複數 z = a + b i {\displaystyle z=a+bi} ( a , b ∈ R {\displaystyle a,b\in \mathbb {R} } )的共軛定義為: z ¯ = a + b i ¯ = a − b i {\displaystyle {\overline {z}}={\overline {a+bi}}=a-bi} 有時也表為: z ∗ = ( a + b i ) ∗ = a − b i {\displaystyle z^{*}={(a+bi)}^{*}=a-bi} 如: 3 − 2 i ¯ = 3 + 2 i {\displaystyle {\overline {3-2i}}=3+2i} 7 ¯ = 7 {\displaystyle {\overline {7}}=7} (實數的共軛為自身) i ¯ = − i {\displaystyle {\overline {i}}=-i} (純虛數的共軛) 將複數理解為複平面的一點的話,則幾何上,複共軛是此點以實數軸為對稱軸的反射。 Remove ads 對於複數 z , w {\displaystyle z,w} : z + w ¯ = z ¯ + w ¯ z − w ¯ = z ¯ − w ¯ z w ¯ = z ¯ w ¯ ( z w ) ¯ = z ¯ w ¯ ( w ≠ 0 ) z ¯ = z ( z ∈ R ) z n ¯ = z ¯ n ( n ∈ Z ) | z ¯ | = | z | | z ¯ | 2 = z z ¯ ( z ¯ ) ¯ = z z − 1 = z ¯ | z | 2 ( z ≠ 0 ) {\displaystyle {\begin{array}{l}{\overline {z+w}}={\overline {z}}+{\overline {w}}\\{\overline {z-w}}={\overline {z}}-{\overline {w}}\\{\overline {zw}}={\overline {z}}\,{\overline {w}}\\{\overline {\left({\dfrac {z}{w}}\right)}}={\dfrac {\overline {z}}{\overline {w}}}&(w\neq 0)\\{\overline {z}}=z&(z\in \mathbb {R} )\\{\overline {z^{n}}}={\overline {z}}^{n}&(n\in \mathbb {Z} )\\|{\overline {z}}|=|z|\\|{\overline {z}}|^{2}=z{\overline {z}}\\{\overline {({\overline {z}})}}=z\\z^{-1}={\dfrac {\overline {z}}{|z|^{2}}}&(z\neq 0)\end{array}}} 一般而言,如果複平面上的函數 ϕ {\displaystyle \phi } 能表為實系數冪級數,則有: ϕ ( z ¯ ) = ϕ ( z ) ¯ {\displaystyle \phi ({\overline {z}})={\overline {\phi (z)}}} 最直接的例子是多項式,由此可推得實系數多項式之複根必共軛。此外也可用於複指數函數與複對數函數(取定一分支): exp ( z ¯ ) = exp ( z ) ¯ log ( z ¯ ) = log ( z ) ¯ ( z ≠ 0 ) {\displaystyle {\begin{array}{l}\exp({\overline {z}})={\overline {\exp(z)}}\\\log({\overline {z}})={\overline {\log(z)}}&(z\neq 0)\end{array}}} 透過歐拉公式,在極坐標表法下,複數共軛可以寫成 r e i θ ¯ = r e − i θ {\displaystyle {\overline {re^{i\theta }}}=re^{-i\theta }} Remove ads 複共軛是複平面上的自同構,但是並非全純函數。 記複共軛為 τ {\displaystyle \tau } ,則有 Gal ( C / R ) = { 1 , τ } {\displaystyle \operatorname {Gal} (\mathbb {C} /\mathbb {R} )=\{1,\tau \}} 。在代數數論中,慣於將複共軛設想為「無窮素數」的弗羅貝尼烏斯映射,有時記為 F ∞ {\displaystyle F_{\infty }} 。 Remove adsWikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for FirefoxRemove ads
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.