Remove ads

餘弦定理三角形中三邊長度與一個角的餘弦值()的數學式,餘弦定理指的是:

一個三角形

同樣,也可以將其改為:

其中角的對邊,而角的鄰邊。

勾股定理則是餘弦定理的特殊情況,當時,等式可被簡化為

當知道三角形的兩邊和一角時,餘弦定理可被用來計算第三邊的長,或是當知道三邊的長度時,可用來求出任何一個角。

Remove ads

歷史

Thumb
一個鈍三角形和它的高。

餘弦定理的歷史可追溯至公元三世紀前歐幾里得幾何原本,在書中將三角形分為鈍角和銳角來解釋,這同時對應現代數學中餘弦值的正負。根據幾何原本第二卷的命題12和13[1],並參考右圖,以現代的數學式表示即為:

其中,將其帶入上式得到:

Remove ads

證明

三角函數

Thumb
具有垂直線的銳角三角形

見右圖,在上做高可以得到(投影定理):

將等式同乘以c得到:

運用同樣的方式可以得到:

的右式取代:

Remove ads

勾股定理

勾股定理之一

Thumb

中,。過點作垂線,垂足為,如果內部,則的長度為的長度為的長度為。根據勾股定理

如果的延長線上,證明是類似的。同理可以得到其他的等式。

Remove ads

勾股定理之二

Thumb
證明所用的三角形

中,。過點作垂線,垂足為,設,則,根據勾股定理

如果的延長線上,證明是類似的。同理可以得到其他的等式。

Remove ads

應用

餘弦定理是解三角形中的一個重要定理。

求邊

餘弦定理可以簡單地變形成:

因此,如果知道了三角形的兩邊及其夾角,可由餘弦定理得出已知角的對邊。

求角

餘弦定理可以簡單地變形成:

因為餘弦函數在上的單調性,可以得到:

因此,如果已知三角形的三邊,可以由餘弦定理得到三角形的三個內角。

參見

參考資料

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.

Remove ads