仿緊空間,數學中,仿緊空間是指一類拓撲空間,他們的每個開覆蓋都有局部有限的(開)加細(精細化)。這類空間的概念於1944年由Dieudonné引入 。每個緊緻空間都是仿緊的。每個仿緊的郝斯多夫空間都是正規的。一個郝斯多夫空間是仿緊的當且僅當其任意開覆蓋都可以單位分解。仿緊空間有時也被要求為郝斯多夫的。

仿緊空間的任意閉子空間是仿緊的。郝斯多夫空間的緊子集是閉的,但是對仿緊子集不成立。如果一個空間的任意子空間都是仿緊的,則其稱為hereditarily paracompact,這等價於要求其每個開子空間是仿緊的。

任意度量空間是仿緊的。一個拓撲空間是可度量的當且僅當它是仿緊的且是局部可度量的郝斯多夫空間。

仿緊性

集合 的一個覆蓋,是指 的一個子集族,並且 包含於這族集合的併集。 設 的一族子集, 為子集的指標集, 若 ,則稱 的覆蓋;若每個 都是開的,則稱 的一個開覆蓋,即 的覆蓋 中每個成員都是開的。

的一個開覆蓋是局部有限的當且僅當X中的每一點存在一個鄰域,其只與這覆蓋中的有限個成員相交。用數學符號來說, 是局部有限的當且僅當任意 中的一點 ,存在一個鄰域 ,使得 是有限的。

例子

  • 每個緊緻空間都是仿緊的。
  • 每個 CW 複形都是仿緊的[1]
  • A. H. Stone 定理」: 每個度量空間都是仿緊的。[2] 早期的證明較為繁複,一個基礎的證明可參見 M. E. Rudin.[3] 對不可分的情形,已有的證明依賴於選擇公理。 此外無論 ZF theory 或 ZF 理論外加獨立選擇公理都是不充分的[4]

一些非仿緊空間的例子:

  • Prüfer 流形是非仿緊的曲面

參考文獻

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.