仿緊空間,數學中,仿緊空間是指一類拓撲空間,他們的每個開覆蓋都有局部有限的(開)加細(精細化)。這類空間的概念於1944年由Dieudonné引入 。每個緊緻空間都是仿緊的。每個仿緊的郝斯多夫空間都是正規的。一個郝斯多夫空間是仿緊的當且僅當其任意開覆蓋都可以單位分解。仿緊空間有時也被要求為郝斯多夫的。
仿緊空間的任意閉子空間是仿緊的。郝斯多夫空間的緊子集是閉的,但是對仿緊子集不成立。如果一個空間的任意子空間都是仿緊的,則其稱為hereditarily paracompact,這等價於要求其每個開子空間是仿緊的。
仿緊性
集合 的一個覆蓋,是指 的一個子集族,並且 包含於這族集合的併集。 設 是 的一族子集, 為子集的指標集, 若 ,則稱 是 的覆蓋;若每個 都是開的,則稱 是 的一個開覆蓋,即 的覆蓋 中每個成員都是開的。
的一個開覆蓋是局部有限的當且僅當X中的每一點存在一個鄰域,其只與這覆蓋中的有限個成員相交。用數學符號來說, 是局部有限的當且僅當任意 中的一點 ,存在一個鄰域 ,使得 是有限的。
例子
- 每個緊緻空間都是仿緊的。
- 每個 CW 複形都是仿緊的[1]。
- 「A. H. Stone 定理」: 每個度量空間都是仿緊的。[2] 早期的證明較為繁複,一個基礎的證明可參見 M. E. Rudin.[3] 對不可分的情形,已有的證明依賴於選擇公理。 此外無論 ZF theory 或 ZF 理論外加獨立選擇公理都是不充分的[4]。
一些非仿緊空間的例子:
- Prüfer 流形是非仿緊的曲面
參考文獻
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.