九點圓的半徑是外接圓的一半,且九點圓平分垂心與外接圓上的任一點的連線。
- 在直角坐標系中,已知圓的方程為,其中為圓的半徑,為圓的圓心坐標。若做圓上三點與點的中點的軌跡,則此軌跡的方程式為:
- 設為外接圓的半徑、為外接圓的圓心坐標、點為垂心坐標。
- 已知九點圓通過頂點到垂心的三條線段的中點,故此軌跡圓就是九點圓,半徑是外接圓的一半,且平分垂心與外接圓上的任一點的連線。
- 同時還可以得出下面的性質:
- 圓心在歐拉線上,且在垂心到外心的線段的中點。由此可知,給定三角形頂點座標,九點圓圓心為
主條目:費爾巴哈定理
- 圓周上四點任取三點做三角形,四個三角形的九點圓圓心共圓。