三重積,又稱混合積,是三個向量相乘的結果。向量空間中,有兩種方法將三個向量相乘,得到三重積,分別稱作純量三重積和向量三重積。 純量三重積 定義 純量三重積是三個向量中的一個和另兩個向量的叉積相乘得到點積,其結果是個贗純量。 設 a {\displaystyle \mathbf {a} } 、 b {\displaystyle \mathbf {b} } 、 c {\displaystyle \mathbf {c} } 為三個向量,則純量三重積的定義為 a ⋅ ( b × c ) {\displaystyle \mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )} 。 特性 設 a = a 1 i + a 2 j + a 3 k {\displaystyle \mathbf {a} =a_{1}\mathbf {i} +a_{2}\mathbf {j} +a_{3}\mathbf {k} } 、 b = b 1 i + b 2 j + b 3 k {\displaystyle \mathbf {b} =b_{1}\mathbf {i} +b_{2}\mathbf {j} +b_{3}\mathbf {k} } 、 c = c 1 i + c 2 j + c 3 k {\displaystyle \mathbf {c} =c_{1}\mathbf {i} +c_{2}\mathbf {j} +c_{3}\mathbf {k} } ,則有 a ⋅ ( b × c ) = | a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 | {\displaystyle \mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )={\begin{vmatrix}a_{1}&a_{2}&a_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\\\end{vmatrix}}} 。 證明 a ⋅ ( b × c ) {\displaystyle \mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )} = ( a 1 i + a 2 j + a 3 k ) ⋅ | i j k b 1 b 2 b 3 c 1 c 2 c 3 | = ( a 1 i + a 2 j + a 3 k ) ⋅ ( i | b 2 b 3 c 2 c 3 | − j | b 1 b 3 c 1 c 3 | + k | b 1 b 2 c 1 c 2 | ) = a 1 | b 2 b 3 c 2 c 3 | − a 2 | b 1 b 3 c 1 c 3 | + a 3 | b 1 b 2 c 1 c 2 | = | a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 | {\displaystyle {\begin{aligned}&=(a_{1}\mathbf {i} +a_{2}\mathbf {j} +a_{3}\mathbf {k} )\cdot {\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\\\end{vmatrix}}\\&=(a_{1}\mathbf {i} +a_{2}\mathbf {j} +a_{3}\mathbf {k} )\cdot (\mathbf {i} {\begin{vmatrix}\ b_{2}&b_{3}\\c_{2}&c_{3}\\\end{vmatrix}}-\mathbf {j} {\begin{vmatrix}\ b_{1}&b_{3}\\c_{1}&c_{3}\\\end{vmatrix}}+\mathbf {k} {\begin{vmatrix}\ b_{1}&b_{2}\\c_{1}&c_{2}\\\end{vmatrix}})\\&=a_{1}{\begin{vmatrix}\ b_{2}&b_{3}\\c_{2}&c_{3}\\\end{vmatrix}}-a_{2}{\begin{vmatrix}\ b_{1}&b_{3}\\c_{1}&c_{3}\\\end{vmatrix}}+a_{3}{\begin{vmatrix}\ b_{1}&b_{2}\\c_{1}&c_{2}\\\end{vmatrix}}\\&={\begin{vmatrix}a_{1}&a_{2}&a_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\\\end{vmatrix}}\end{aligned}}} 利用行列式的特性,可知順序置換向量的位置不影響純量三重積的值: a ⋅ ( b × c ) = b ⋅ ( c × a ) = c ⋅ ( a × b ) {\displaystyle \mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )=\mathbf {b} \cdot (\mathbf {c} \times \mathbf {a} )=\mathbf {c} \cdot (\mathbf {a} \times \mathbf {b} )} 任意對換兩個向量的位置,純量三重積與原來相差一個負號: a ⋅ ( b × c ) = − a ⋅ ( c × b ) {\displaystyle \mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )=-\mathbf {a} \cdot (\mathbf {c} \times \mathbf {b} )} a ⋅ ( b × c ) = − b ⋅ ( a × c ) {\displaystyle \mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )=-\mathbf {b} \cdot (\mathbf {a} \times \mathbf {c} )} a ⋅ ( b × c ) = − c ⋅ ( b × a ) {\displaystyle \mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )=-\mathbf {c} \cdot (\mathbf {b} \times \mathbf {a} )} 若任意兩個向量相等,則純量三重積等於零: a ⋅ ( a × b ) = a ⋅ ( b × a ) = b ⋅ ( a × a ) = b ⋅ 0 = 0 {\displaystyle \mathbf {a} \cdot (\mathbf {a} \times \mathbf {b} )=\mathbf {a} \cdot (\mathbf {b} \times \mathbf {a} )=\mathbf {b} \cdot (\mathbf {a} \times \mathbf {a} )=\mathbf {b} \cdot \mathbf {0} =0} 其他記號 有時候,純量三重積會以括號表示: [ a b c ] = a ⋅ ( b × c ) = ( a × b ) ⋅ c {\displaystyle [\mathbf {a} \ \mathbf {b} \ \mathbf {c} ]=\mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )=(\mathbf {a} \times \mathbf {b} )\cdot \mathbf {c} } 幾何意義 幾何上,由三個向量定義的平行六面體,其體積等於三個純量純量三重積的絕對值: V = | a ⋅ ( b × c ) | = | | a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 | | {\displaystyle V=|\mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )|=\left|{\begin{vmatrix}a_{1}&a_{2}&a_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\end{vmatrix}}\right|} 證明 用向量來定義平行六面體。 以 b {\displaystyle \mathbf {b} } 和 c {\displaystyle \mathbf {c} } 來表示底面的邊,則根據叉積的定義,底面的面積 A {\displaystyle A} 為 A = | b | | c | sin θ = | b × c | {\displaystyle A=|\mathbf {b} ||\mathbf {c} |\sin \theta =|\mathbf {b} \times \mathbf {c} |} , 其中 θ {\displaystyle \theta } 是 b {\displaystyle \mathbf {b} } 與 c {\displaystyle \mathbf {c} } 之間的角,而高 h {\displaystyle h} 為 h = | a | cos α {\displaystyle h=|\mathbf {a} |\cos \alpha } , 其中 α {\displaystyle \alpha } 是 a {\displaystyle \mathbf {a} } 與 h {\displaystyle h} 之間的角。 從圖中我們可以看到, α {\displaystyle \alpha } 的大小限定為 0 ∘ ≤ α < 90 ∘ {\displaystyle 0^{\circ }\leq \alpha <90^{\circ }} 。而向量 b × c {\displaystyle \mathbf {b} \times \mathbf {c} } 與 a {\displaystyle \mathbf {a} } 之間的角 ϕ {\displaystyle \phi } 則有可能大於90°( 0 ∘ ≤ ϕ < 180 ∘ {\displaystyle 0^{\circ }\leq \phi <180^{\circ }} )。也就是說,由於 b × c {\displaystyle \mathbf {b} \times \mathbf {c} } 與 h {\displaystyle h} 平行, ϕ {\displaystyle \phi } 的值要麼等於 α {\displaystyle \alpha } ,要麼等於 180 ∘ − α {\displaystyle 180^{\circ }-\alpha } 。因此 cos α = ± cos ϕ = | cos ϕ | {\displaystyle \cos \alpha =\pm \cos \phi =|\cos \phi |} , 且 h = | a | | cos ϕ | {\displaystyle h=|\mathbf {a} ||\cos \phi |} 。 我們得出結論: V = A h = | a | | b × c | | cos ϕ | {\displaystyle V=Ah=|\mathbf {a} ||\mathbf {b} \times \mathbf {c} ||\cos \phi |} , 於是,根據點積的定義,它等於 a ⋅ ( b × c ) {\displaystyle \mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )} 的絕對值,即 V = | a ⋅ ( b × c ) | {\displaystyle V=|\mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )|} 。 證畢。 向量三重積 向量三重積是三個向量中的一個和另兩個向量的叉積相乘得到的叉積,其結果是個向量。 定義 對於三個向量 a {\displaystyle \mathbf {a} } 、 b {\displaystyle \mathbf {b} } 、 c {\displaystyle \mathbf {c} } ,向量三重積的定義為 a × ( b × c ) {\displaystyle \mathbf {a} \times (\mathbf {b} \times \mathbf {c} )} 。 值得注意的是,一般來說, a × ( b × c ) ≠ ( a × b ) × c {\displaystyle \mathbf {a} \times (\mathbf {b} \times \mathbf {c} )\neq (\mathbf {a} \times \mathbf {b} )\times \mathbf {c} } 。 特性 以下恆等式,稱作三重積展開或拉格朗日公式,對於任意向量 a {\displaystyle \mathbf {a} } 、 b {\displaystyle \mathbf {b} } 、 c {\displaystyle \mathbf {c} } 均成立: a × ( b × c ) = b ( a ⋅ c ) − c ( a ⋅ b ) {\displaystyle \mathbf {a} \times (\mathbf {b} \times \mathbf {c} )=\mathbf {b} (\mathbf {a} \cdot \mathbf {c} )-\mathbf {c} (\mathbf {a} \cdot \mathbf {b} )} ( a × b ) × c = − c × ( a × b ) = − a ( c ⋅ b ) + b ( c ⋅ a ) {\displaystyle {\begin{aligned}(\mathbf {a} \times \mathbf {b} )\times \mathbf {c} &=-\mathbf {c} \times (\mathbf {a} \times \mathbf {b} )\\&=-\mathbf {a} (\mathbf {c} \cdot \mathbf {b} )+\mathbf {b} (\mathbf {c} \cdot \mathbf {a} )\end{aligned}}} 英文中有對於第一式有助記口訣BAC-CAB (BACK-CAB,後面的出租車)[1],但是不容易記住第一式跟第二式的變化,很容易搞混。 觀察兩個公式,可得到以下三點: 兩個分項都帶有三個向量 ( a , b , c {\displaystyle \mathbf {a} ,\mathbf {b} ,\mathbf {c} } ) 三重積一定是先做叉積的兩向量之線性組合 中間的向量所帶的系數一定為正(此處為向量 b {\displaystyle \mathbf {b} } ) 證明 我們可以由叉積的定義計算 u × ( v × w ) {\displaystyle \mathbf {u} \times (\mathbf {v} \times \mathbf {w} )} 的 x {\displaystyle x} 分量: ( u × ( v × w ) ) x = u y ( v x w y − v y w x ) − u z ( v z w x − v x w z ) = v x ( u y w y + u z w z ) − w x ( u y v y + u z v z ) = v x ( u x w x + u y w y + u z w z ) − w x ( u x v x + u y v y + u z v z ) = ( u ⋅ w ) v x − ( u ⋅ v ) w x {\displaystyle {\begin{aligned}(\mathbf {u} \times (\mathbf {v} \times \mathbf {w} ))_{x}&=\mathbf {u} _{y}(\mathbf {v} _{x}\mathbf {w} _{y}-\mathbf {v} _{y}\mathbf {w} _{x})-\mathbf {u} _{z}(\mathbf {v} _{z}\mathbf {w} _{x}-\mathbf {v} _{x}\mathbf {w} _{z})\\&=\mathbf {v} _{x}(\mathbf {u} _{y}\mathbf {w} _{y}+\mathbf {u} _{z}\mathbf {w} _{z})-\mathbf {w} _{x}(\mathbf {u} _{y}\mathbf {v} _{y}+\mathbf {u} _{z}\mathbf {v} _{z})\\&=\mathbf {v} _{x}(\mathbf {u} _{x}\mathbf {w} _{x}+\mathbf {u} _{y}\mathbf {w} _{y}+\mathbf {u} _{z}\mathbf {w} _{z})-\mathbf {w} _{x}(\mathbf {u} _{x}\mathbf {v} _{x}+\mathbf {u} _{y}\mathbf {v} _{y}+\mathbf {u} _{z}\mathbf {v} _{z})\\&=(\mathbf {u} \cdot \mathbf {w} )\mathbf {v} _{x}-(\mathbf {u} \cdot \mathbf {v} )\mathbf {w} _{x}\end{aligned}}} 類推至 y {\displaystyle y} 和 z {\displaystyle z} 分量,可得: ( u × ( v × w ) ) y = ( u ⋅ w ) v y − ( u ⋅ v ) w y ( u × ( v × w ) ) z = ( u ⋅ w ) v z − ( u ⋅ v ) w z {\displaystyle {\begin{aligned}(\mathbf {u} \times (\mathbf {v} \times \mathbf {w} ))_{y}&=(\mathbf {u} \cdot \mathbf {w} )\mathbf {v} _{y}-(\mathbf {u} \cdot \mathbf {v} )\mathbf {w} _{y}\\(\mathbf {u} \times (\mathbf {v} \times \mathbf {w} ))_{z}&=(\mathbf {u} \cdot \mathbf {w} )\mathbf {v} _{z}-(\mathbf {u} \cdot \mathbf {v} )\mathbf {w} _{z}\end{aligned}}} 所以 a × ( b × c ) = b ( a ⋅ c ) − c ( a ⋅ b ) {\displaystyle \mathbf {a} \times (\mathbf {b} \times \mathbf {c} )=\mathbf {b} (\mathbf {a} \cdot \mathbf {c} )-\mathbf {c} (\mathbf {a} \cdot \mathbf {b} )} 。 利用上述恆等式,可得以下結果: a × ( b × c ) + b × ( c × a ) + c × ( a × b ) = 0 {\displaystyle \mathbf {a} \times (\mathbf {b} \times \mathbf {c} )\;+\mathbf {b} \times (\mathbf {c} \times \mathbf {a} )\;+\mathbf {c} \times (\mathbf {a} \times \mathbf {b} )=0} (雅可比恆等式) ( a × b ) × c = a × ( b × c ) − b × ( a × c ) {\displaystyle (\mathbf {a} \times \mathbf {b} )\times \mathbf {c} =\mathbf {a} \times (\mathbf {b} \times \mathbf {c} )\;-\mathbf {b} \times (\mathbf {a} \times \mathbf {c} )} 在向量分析中,有以下與梯度相關的一條恆等式: ∇ × ( ∇ × f ) = ∇ ( ∇ ⋅ f ) − ( ∇ ⋅ ∇ ) f {\displaystyle \nabla \times (\nabla \times \mathbf {f} )=\nabla (\nabla \cdot \mathbf {f} )-(\nabla \cdot \nabla )\mathbf {f} } 這是一個拉普拉斯-德拉姆算子 Δ = d δ + δ d {\displaystyle \Delta =\mathrm {d} \delta +\delta \mathrm {d} } 的特殊情形。 參見 向量 點積 叉積 四重積 quadruple product(英語:Vector_algebra_relations#Quadruple_product) 參考文獻 [1]David K. Cheng. Field and Wave Electromagnetics. 2014: 第18頁. ISBN 9781292026565. Wikiwand - on Seamless Wikipedia browsing. On steroids.