豪豬亞目(學名:Hystricomorpha)在歷史上曾有過許多含義。廣義上是指所有具有豪豬型顴弓-咬肌結構(Zygomasseteric system)的齧齒目動物(跳鼠類除外),包括豪豬下目(Hystricognathi)、櫛趾鼠科(Ctenodactylidae)、鱗尾松鼠科(Anomaluridae)、跳兔科(Pedetidae)。分子及形態學研究表明,將鱗尾松鼠科與跳兔科列入其中是有爭議的。根據Carleton與Musser的研究[1],這兩科被分為鱗尾松鼠亞目(Anomaluromorpha)。
Quick Facts 科學分類, 下目 ...
豪豬亞目
|
|
水豚 Hydrochoerus hydrochaeris
|
科學分類
|
界:
|
動物界 Animalia
|
門:
|
脊索動物門 Chordata
|
綱:
|
哺乳綱 Mammalia
|
目:
|
齧齒目 Rodentia
|
亞目:
|
豪豬亞目 Hystricomorpha Brandt, 1855
|
下目
|
- 櫛趾鼠下目 Ctenodactylomorphi
- 豪豬下目 Hystricognathi
|
Close
豪豬亞目(又被稱為Entodacrya或Ctenohystrica)的現代定義是指將櫛趾鼠與豪豬下目聯繫起來的分類學假設。[1]支持這一說法有很多形態學以及分子系統發生學的證據。如果此假說是真實的,那傳統觀點中的松鼠形亞目將被推翻,成為一個並系群。
豪豬類動物,或至少是豚鼠小目中的成員,有時會被認為是非齧齒類。[2][3][4]不過大多數分子與遺傳學研究都表明齧齒動物是單系群。[5][6][7][8][9][10]而支持齧齒類為多系群的證據被認為是源自長枝吸引(long branch attraction)的現象。[11]
豪豬類動物於漸新世早期出現於南美洲[12],這裏此前的陸地哺乳動物只有後獸下綱、貧齒總目、南蹄目。豪豬類是從非洲橫渡大西洋到達南美洲的。同一類型的遷徙還發生在靈長目中,這些都發生於南北美洲生物大遷徙之前。不過這些說法至今尚存爭議。
以下的分類是根據Marivaux等人對早期齧齒類化石進行的支序分類學分析而來的。[13][14]他們的研究支持豪豬亞目假說,並表明McKenna與Bell定義的先松鼠亞目(Sciuravida)[15]是多系群,因而並不成立。
- 豪豬亞目 Hystricomorpha
- 梳齒鼠總科 Ctenodactyloidea
- 梳齒鼠科 Ctenodactylidae
- †科 Tammquammyidae
- 硅藻鼠科 Diatomyidae
- †豫鼠科 Yuomyidae
- †饢鼠科 Chapattimyidae
- 演化支 Hystricognathiformes
- †查干鼠科 Tsaganomyidae
- 豪豬下目 Hystricognathi
- †俾路支鼠科 Baluchimyinae
- 豪豬科 Hystricidae
- 菲奧鼠小目(非洲豪豬類)Phiomorpha
- †長尾菲奧鼠科 Myophiomyidae
- †鑽石鼠科 Diamantomyidae
- †菲奧鼠科 Phiomyidae
- †肯雅鼠科 Kenyamyidae
- 岩鼠科 Petromuridae
- 蔗鼠科 Thryonomyidae
- 濱鼠科 Bathyergidae
- †似濱鼠科 Bathyergoididae
- 豚鼠小目(南美豪豬類)Caviomorpha
- 美洲豪豬總科 Erethizontoidea
- 豚鼠總科 Cavioidea
- †頭刺豚鼠科 Cephalomyidae
- 刺豚鼠科 Dasyproctidae
- 兔豚鼠科 Cuniculidae
- †始豚鼠科 Eocardiidae
- 花背豚鼠科 Dinomyidae
- 豚鼠科 Caviidae
- 八齒鼠總科 Octodontoidea
- 八齒鼠科 Octodontidae
- 櫛鼠科 Ctenomyidae
- 棘鼠科 Echimyidae
- 海狸鼠科 Myocastoridae
- 硬毛鼠科 Capromyidae
- †海地島鼠科 Heptaxodontidae
- 毛絲鼠總科 Chinchilloidea
- 毛絲鼠科 Chinchillidae
- †新絨鼠科 Neoepiblemidae
- 華毛鼠科 Abrocomidae
Carleton and Musser, 2005
Sullivan and Swofford, 1997
Robinson-Rechavi et al., 2000
- Bergsten, J. 2005. A review of long-branch attraction. Cladistics, 21:163-193.
- Cao, Y., Adachi, J., Yano, T. and Hasegawa, M. 1994. Phylogenetic place of guinea pigs: No support of the rodent-polyphyly hypothesis from maximum-likelihood analyses of multiple protein sequences. Molecular Biology and Evolution, 11: 593-604.
- Carleton, M. D. and G. G. Musser. 2005. Order Rodentia. Pp745–752 in Mammal Species of the World A Taxonomic and Geographic Reference (D. E. Wilson and D. M. Reeder eds.). Baltimore, Johns Hopkins University Press.
- D'Erchia, A., Gissi, C., Pesole, G., Saccone, C. and Arnason, U. 1996. The guinea-pig is not a rodent. Nature, 381 (6583): 597-600.
- Flynn, J. J., Wyss, A. R., Croft, D. A., and Charrier, R. 2003. The Tinguiririca Fauna, Chile: biochronology, paleoecology, biogeography, and a new earliest Oligocene South American Land Mammal 『Age’. Palaeogeography, Palaeoclimatology, Palaeoecology, 195:229-259.
- Graur, D., Hide, W. and Li, W. 1991. Is the guinea-pig a rodent? Nature, 351: 649-652.
- Huchon, D. E. J. P. Douzery. 2001. From the Old World to the New World: A molecular chronicle of the phylogeny and biogeography of hystricognath rodents. Molecular Phylogenetics and Evolution, 20:238-251.
- Kuma, K. and Miyata, T. 1994. Mammalian phylogeny inferred from multiple protein data. Japanese Journal of Genetics, 69 (5): 555-66.
- Landry, S. O. J. 1999. A proposal for a new classification and nomenclature for the glires. Mitt. Mus. Nat. Kd. Berl. Zool. Reihe, 75:283-316.
- Lin, Y-H, et al. 2002. Four new mitochondrial genomes and the increased stability of evolutionary trees of mammals from improved taxon sampling. Molecular Biology and Evolution, 19: 2060-2070.
- Marivaux, L., M. Vianey-Liaud, and J.-J. Jaeger. 2004. High-level phylogeny of early Tertiary rodents: dental evidence. Zoological Journal of the Linnean Society, 142:105-134.
- Marivaux, L. J. L. Welcomme, M. Vianey-Liaud, and J.J. Jaeger. 2002. The role of Asia in the origin and diversification of hystricognathous rodents. Zoologica Scripta, 31:225-239.
- McKenna, Malcolm C., and Bell, Susan K. 1997. Classification of Mammals Above the Species Level. Columbia University Press, New York, 631 pp. ISBN 0-231-11013-8
- Reyes, A., Pesole, G. and Saccone, C. 2000. Long-branch attraction phenomenon and the impact of among-site rate variation on rodent phylogeny. Gene, 259 (1-2): 177-87.
- Reyes, A., Gissi, C., Catzeflis, F., Nevo, E. Pesole, G. and Saccone, C. 2004. Congruent mammalian trees from mitochondrial and nuclear genes using Bayesian methods. Molecular Biology and Evolution, 21 (2): 397-403.
- Robinson-Rechavi, M., Ponger, L. and Mouchiroud, D. 2000. Nuclear gene LCAT supports rodent monophyly. Molecular Biology and Evolution, 17: 1410-1412.
- Sullivan, J. and Swofford, D.L. 1997. Are guinea pigs rodents? the importance of adequate models in molecular phylogenetics. Journal of Mammalian Evolution, 4: 77-86.