幾何學中,頂點圖是一種用於描述幾何圖形頂角特性的方式,大致上是將一個幾何圖形角被切去時所露出的形狀[1]

Thumb
立方體的頂點圖為正三角形
Thumb
三角柱的頂點圖是一個等腰三角形。其中等腰三角形的底邊位於三角柱的三角形面,另外兩腰位於正方形面上。為了要方便表達這個頂點圖的性質,我們可以使用頂點佈局英語Vertex configuration符號3.4.4表是,其代表頂點圖的等腰三角形其中一條邊來自來源多面體三角形、兩條來自來源多面體的正方形。

定義

先從多面體上選一個頂點,將該頂點的連出去的邊所連接到的頂點標記起來,將這些標記跨越相鄰面連接起來,這些線形成完整的一周,也就是一個環繞着該頂點的多邊形,這個多邊形即為該多面體的頂點圖[2]

正幾何圖形

Thumb
大二十面體的頂點圖是五角星,可以用施萊夫利符號計為{5/2}

若一個幾何圖形正圖形,其本身和頂點圖就都能夠使用施萊夫利符號表示。

正圖形施萊夫利符號一般會寫成 {a,b,c,...,y,z} 的形式,胞為 {a,b,c,...,y},頂點圖則可以表示為 {b,c,...,y,z}。

  1. 正多面體在施萊夫利符號中計為{p,q},其頂點圖就是一個正q邊形,在施萊夫利符號中計為{q}。
    • 舉例來說,立方體在施萊夫利符號中計為 {4,3},其頂點圖是正三角形,在施萊夫利符號中計為 {3}。
  2. 四維正圖形英語regular 4-polytope三維空間填充在施萊夫利符號中計為{p,q,r},其頂點圖在施萊夫利符號中就計為{q,r}.
    • 舉例來說,超立方體在施萊夫利符號中計為{4,3,3},其頂點圖是正四面體,在施萊夫利符號中計為{3,3}。
    • 同樣的,立方體堆砌的施萊夫利符號為{4,3,4},其頂點圖是施萊夫利符號計為{3,4}的正八面體

範例

Thumb
部分的截角立方體堆砌

以截角立方體堆砌為例,其頂點圖為一個非正的四角錐。

頂點圖:不規則四角錐 Thumb
施萊格爾圖英語Schlegel diagram
Thumb
透視圖
八面體的正方形頂點圖 Thumb
(3.3.3.3)
四個來自截角立方體的等腰三角形 Thumb
(3.8.8)

稜圖

Thumb
截角立方體堆砌有兩種稜的角,其中一種是4個截角立方體的公共稜,另一種是1個正八面體和兩個截角立方體的公共稜。可以以2個稜圖來表示,也就是說其頂點圖的頂點圖有兩種可能。

稜圖是頂點圖的頂點圖[3],可用於描述幾何圖形的角(在三維空間中可理解為二面角)的特性。

往更高的維度推廣,還有面圖、胞圖,面圖用於描述幾何圖形的四維面與面的交角,可以理解為堆砌體中,面與面接合的部分,雖然三維的面與面交會的部分都是平角,但到四維空間就可以存在角度,類似二面角那樣,到五維空間就會需要類似頂點圖的面圖來描述其結構(類似於正多邊形鑲嵌的多邊形與多邊形棱的交會部分,因為是在平面上,因此這個二面角當然會是平角,但到了三維空間,這種角就會出現角度、四維以上就會有不止兩個圖形交會於此,因此需要棱圖來描述)。其他更高維度還有胞圖、n維胞圖等。

依此概念繼續推廣還有面圖、胞圖......以此類推。他們用來描述高維度的幾何體對應元素的結構。

參見

參考文獻

外部連結

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.